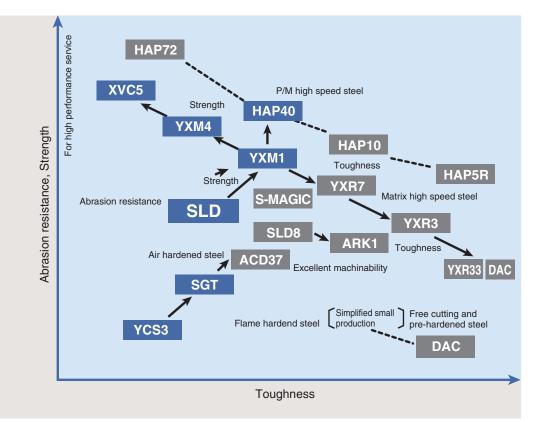


General Catalog of Y55 TOOL STEELS

Hitachi Metals, Ltd.


	COLD WORKING TOOL STEELS			
	COLD WORKING TOOL STEELS SLD MAGIC			
	HOT WORKING TOOL STEELS			
	DIE STEELS FOR DIE CASTING DAC Series			
	PLASTIC MOLD STEELS HPM Series			
· · · · · · · · · · · · · · · · · · ·	PLASTIC MOLD STEELS CENA1			
	HIGH SPEED TOOL STEELS			

YSS COLD WORKING TOOL STEELS

1

Characteristics of YSS Cold Work Tool Steels

Comparison of charactistics

YSS grade	Abrasion resistance	Pressure resistance	Strength at elevated temperature	Toughness	Hardenability	Distortion by heat treatment	Machinability	Weldability	Standard hardness (HRC)
S-MAGIC	А	А	В	Α-	A ⁺	A ⁺	A	В	58~62
SLD	А	А	В	В	A ⁺	A ⁺	В	С	57~63
ARK1	B ⁺	А	В	А	A ⁺	A ⁺	А	В	58~60
SLD8	Α-	А	B ⁺	Α-	A ⁺	А	B+	С	58~63
SLD10	A	A ⁺	A	Α-	A ⁺	А	В-	С	59~65
CRD	A ⁺	А	С	С	В-	В	С	D	57~63
YCS3	D	С	D	С	D	D	A ⁺	В	57~63
SGT	С	B+	D	В	С	D	А	В	57~63
ACD37	В	Α-	С	В	A ⁺	А	А	В	55~60
HMD5 HMD1	С	В	D	В	_	_	А	А	55~60
HPM1 HPM2T	D-	D	D	Α-	_	_	A	А	40
YXM1	А	A ⁺	А	Α-	В	В	В	С	58~64
YXM4	A++	A ⁺	A ⁺	В	В	В	В-	С	62~66
XVC5	A+++	A++	A++	С	В	В-	С	D	63~67
YXR7	А	A ⁺	А	А	А	В	В	С	61~65
YXR3	Α-	А	А	A ⁺	В	В	B+	C+	58~61
YXR33	В	В	A ⁺	A++	А	В	B ⁺	C+	54~58
HAP5R	А	A ⁺	А	A ⁺	А	А	В	С	58~62
HAP10	A ⁺	A ⁺	А	А	A	А	В-	С	62~65
HAP40	A++	A++	A++	Α-	В	А	C+	С	64~67
HAP72	A+++	A+++	A+++	С	A ⁻	А	C-	D	68~71

(A is the uppermost level and + indicates higher performance)

Applications and YSS grade Features

YSS grade	Main applications	Features
S-MAGIC (NEW)	Cold work dies for high-tensile steels, SUS, mass production, and general use.	High performance cold work tool steel attaining both extended mold lifespan and outstandingly easy mold fabrication. 60~62 HRC with high temperature. tempering. Excellent wear & galling resistance.
SLD	Cold work dies for general use, forming roll, shear.	Cold work die steel with high abrasion resistance for general use, excellent harden-ability and minimal quench stress.
ARK1	Dies for printed circuit board, die plates, stripper plates.	Cold work die steel with high toughness and improved machinability. The same heat treatment conditions as SKD11.
SLD8	Rolling dies, cold forging dies.	62HRC or more with high temperature tempering, superior machinability and toughness.
SLD10	Rolling dies.	Extremely highest hardness in die steels. 62-64HRC, with excellent toughness.
CRD	Drawing dies, blanking dies for mass production, brick liner.	Cold work die steel with highest abrasion resistance.
YCS3	Press forming dies, jigs and tools.	Carbon tool steel for small production to be quenched in oil , easy to heat-treat.
SGT	Dies for deep drawing, gauges.	Cold work die steel with superior machinability for generaluse; Be careful with quenching large dies and wire electric discharge machining.
ACD37	Dies for deep drawing, gauges.	Vacuum quenched and air quenched steel, improved for SGT as to hardenability and wire electric discharge machinability.
HMD5 HMD1	Dies for deep drawing.	Steel for flame hardening, resulting in high hardness and small strain even with air quenched; good weldability.
HPM1	Press forming dies for small production, jigs and tools.	Free cutting and fully hardened steel, good nitriding characteristics.
YXM1	Cold forging dies, cold heading dies, slitter.	High speed steel with high abrasion resistance and toughness for general use.
YXM4 XVC5	Cold forging dies, drawing dies.	High speed steel to prevent from abrasion, seizure and deformation under high pressure.
YXR7	Rolling dies, cold forging dies, roll, cold forging panches, blanking panches.	Matrix high speed steel, extremely highest toughness in 62-65HRC. available to vacuum quenching.
YXR3	Dies to be used for cracking or chip breaking resistance.	Matrix high speed steel for general use, extremely highest toughness in 58-61HRC.
YXR33	Cold forging dies, warm forging dies.	Matrix high speed steel extremely highest toughness in high speed steels.
HAP5R	Cold forging dies, fine blanking dies.	Standard hardness 56-58HRC. Extremely tough Powder Metallurgy process high speed steel.
HAP10	Fine blanking dies.	Extremely tough Powder Metallurgy process high speed steel.
HAP40	Press forming dies for mass production, roll.	P/M high speed steel with high abrasion resistance and toughness for general use.
HAP72	Cold plastic working dies of long life, high performanced IC molds.	P/M high speed steel with high hardness and highest abrasion resistance.

Type and Chemical Compositions

	Grade		Chemical Composition (%)										
YSS	JIS equivalent	С	Si	Mn	Р	S	Ni	Cr	w	Мо	v	Co	
S-MAGIC	Patent pending				High p	erformanc	e cold wo	ork tool ste	eel				
SLD	SKD11	1.50	0.25	0.45	≤ 0.025	≤ 0.010	-	12.00	-	1.00	0.35	-	
ARK1	Patented steel				High to	oughness	cold work	tool steel	l				
SLD8	Patented steel				High st	trength co	ld work to	ol steel					
CRD	SKD1	2.10	0.25	0.45	≤ 0.025	≤ 0.010	-	13.50	-	-	-	-	
YCS3	SKS93	1.05	0.35	0.80	≤ 0.030	≤ 0.030	-	0.40	-	-	-	-	
SGT	SKS3	0.95	0.25	1.05	≤ 0.025	≤ 0.010	-	0.75	0.75	_	_	-	
ACD37		0.85	0.25	2.10	≤ 0.025	≤ 0.010	-	1.20	-	1.50	-	-	
HMD5	Original steel				Flame	hardened	tool stee						
HMD1	enginal eteel												
HPM1	Patented steel	0.12	0.30	0.90	≤ 0.025	≤ 0.10	3.00	-	-	0.30	Cu2.2	Al1.0	
YXM1	SKH51	0.85	0.25	0.35	≤ 0.025	≤ 0.010	-	4.15	6.50	5.30	2.05	-	
YXM4	SKH55	0.85	0.25	0.35	≤ 0.025	≤ 0.010	-	4.15	6.50	5.30	2.05	5.00	
XVC5	SKH57	1.25	0.25	0.35	≤ 0.025	≤ 0.010	-	4.15	10.00	3.50	3.45	10.00	
YXR7	Original steel				Matrix	high spee	d steel						
YXR3	- · · · g. · · · · · · · · · ·												
YXR33	Patented steel				Extrem	ely tough	matrix hig	gh speed	steel				
HAP5R	P/M high				Extrem	ely tough	P/M high	speed st	eel				
HAP10	speed steels	1.3	-	-	-	-	-	5.0	3.0	6.0	4.0	-	
HAP40	SKH40	1.3	-	-	-	-	-	4.0	6.0	5.0	3.0	8.0	
HAP72	Patented steel	2.1	-	_	_	-	-	4.0	9.5	8.2	5.0	9.5	

Heat Treatment

(1)Annealing

- 1. All material is delivered as spheroidized annealed condition.
- 2. When used after reforging, spheroidized annealing is to be done before hardening.
- 3. Stress relief annealing is to be done in order to remove stress occured by cold working such as cold drawing, cold rolling or cutting and machining.
 - Heating temperature: 650-700°C
 - Holding time: 1h/25mm thickness
- 2. Holding time at hardening temperature (holding time)

(2)Holding time at hardening temperature

- High speed tool steel
- 1. Preheating time 1st stage: 30 minutes for every

25 mm of the tool at 500-550°C 2nd stage: (holding time X 2) at 850°C 3nd stage: (holding time X 2) at 1,050°C

Preheating is (holding time X 2) at 9,000 C for small thickness (50 mm max.) and simple shape tools, and wherever facilities are limited. The first stage can be omitted for small tools.

Furnace type	Thickness (mm)	5	10	20	30	40	50	60	70	80	90
O - H h - H	Holding time (sec)	60	90	160	240	280	350	390	420	440	495
Salt bath	Thickness X multiple	X12	X9	X8	X8	X7	X7	X6.5	X6	X5.5	X5.5

Note: Use the holding time in the salt bath as the immersion time.

• Cold die steels, alloy tool steels and carbon tool steels

1. Preheating time 1st stage: (holding time X 2) at 500-550 $^\circ\text{C}$

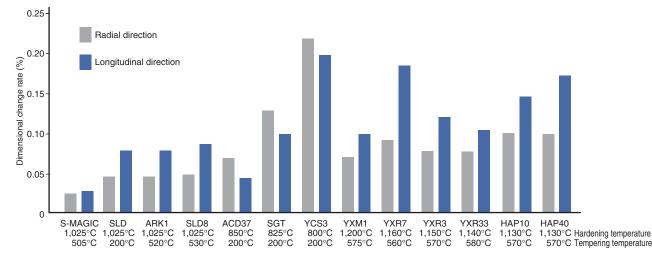
2nd stage: (holding time X 1) at 750-800°C

(Unnecessary for SK, SKS)

Except that preheating can be omitted wherever an electric furnace is used or for small tools (50mm or less thickness) and simple shape tools.

2. Holding time at hardening temperature (holding time)

Furnace type	Thickness (mm) Time	≤ 15	25	50	75	100	125	150	200	300
Salt bath or electric furnace	Holding time (min)	15	25	40	50	60	65	70	80	100


Note: Using salt bath needs preheating and the holding time used as the immersion time.

(3) Holding time at tempering temperature

Thickness (mm)	≤ 25	26~35	36~64	65~84	85~124	125~174	175~249	250~349	350~499
Holding time for tempering (h)	1	1.5	2	3	4	5	6	7	8

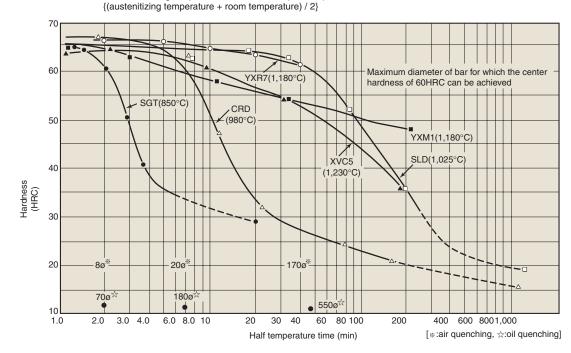
Note: Apply this standard to tempering at 500°C or more, and increase elongate tempering time to tempering temperature X 1.5 for 250-500°C and holding time X 2 for tempering temperature less than 250°C

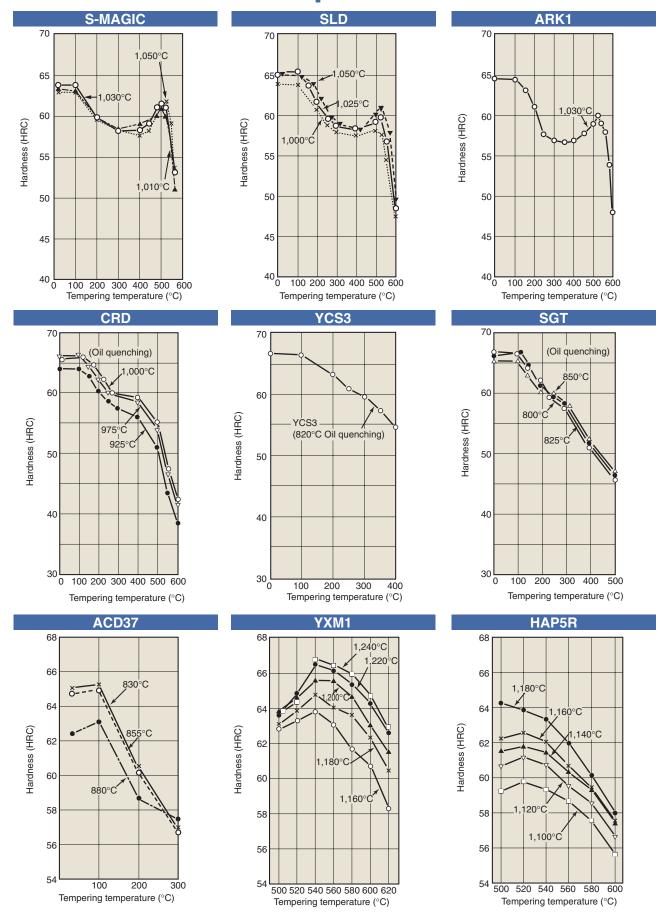
(4)Dimensional changes after heat treatment

Heat Treatment

(5) Standard heat treatment conditions

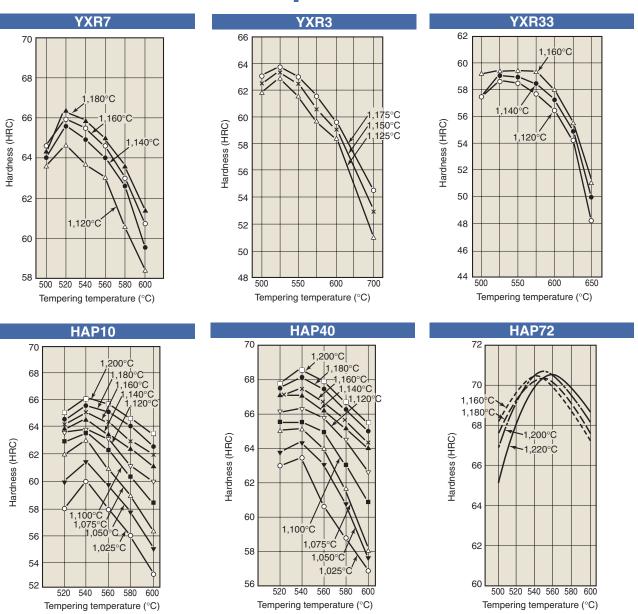
YSS grade			Hardening	Tempe	ering
YSS grade	Temperature (°C)	Hardness (HBW)	Temperature (°C)	Temperature (°C)	Hardness (HRC)
S-MAGIC	830-880 Slow cooling	≤ 255	1010-1040 Air quenching	480~530 Air cooling	≥ 60
SLD	830-880 Slow cooling	≤ 248	1000-1050 (980-1030) Air quenching (Oil quenching)	150~200 Air cooling	≥ 58
ARK1	830-880 Slow cooling	≤ 248	1010-1040 Air quenching	480~530 Air cooling	≥ 58
SLD8	830-880 Slow cooling	≤ 248	520~550 Air cooling	≥ 60	
CRD	830-880 Slow cooling	≤ 248	930-980 (950-1000) Oil quenching (Air quenching)	150~200 Air cooling	≥ 61
YCS3	750-780 Slow cooling	≤ 212	790-850 Oil quenching	150~200 Air cooling	≥ 63
SGT	750-780 Slow cooling	≤ 217	800-850 Oil quenching	150~200 Air cooling	≥ 60
ACD37	750-800 Slow cooling	≤ 235	830-870 Air quenching	150~200 Air cooling	≥ 58
HMD5/HMD1	825-875 Slow cooling	≤ 235	Flame hardening		
YXM1	800-880 Slow cooling	≤ 255	(1)1220-1240 (2)1200-1220 Oil quenching	550~570 Air cooling	≥ 63
YXM4	800-880 Slow cooling	≤ 277	(1)1230-1250 (2)1210-1230 Oil quenching	560~580 Air cooling	≥ 64
XVC5	820-880 Slow cooling	≤ 285	(1)1230-1250 (2)1210-1230 Oil quenching	550~580 Air cooling	≥ 64
YXR7	800-880 Slow cooling	≤ 241	(1)1160-1180 (2)1120-1160 Oil quenching	550~580 Air cooling	≥ 61
YXR3	800-880 Slow cooling	≤ 241	(1)1150-1170 (2)1130-1150 Oil quenching	560~590 Air cooling	≥ 58
YXR33	800-880 Slow cooling	≤ 241	1080-1160 Oil quenching	550~600 Air cooling	≥ 55
HAP5R	820-870 Slow cooling	≤ 269	1120-1160 Oil quenching	530~580 Air cooling	≤ 58
HAP10	820-870 Slow cooling	≤ 269	(1)1170-1190 (2)1120-1170 Oil quenching	530~580 Air cooling	≥ 61
HAP40	820-870 Slow cooling	≤ 277	(1)1190-1210 (2)1120-1190 Oil quenching	560~580 Air cooling	≥ 64
HAP72	820-870 Slow cooling	≤ 352	1180-1210 Oil quenching	560~580Air cooling	≥ 68


(1) Simple shape tools


(2) The others, especially needs toughness

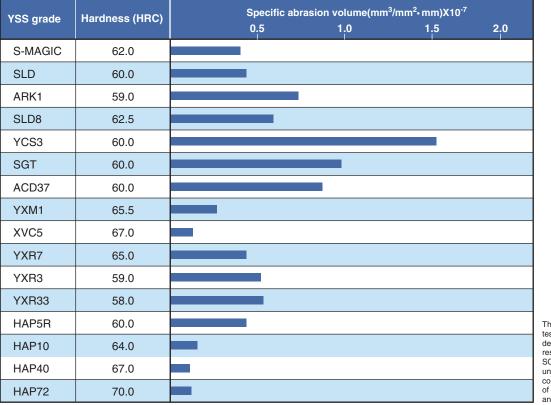
*Sample size is 15mm square or round and 20mm length based on the JIS Standard hardness test.

(6) Hardenability


(Half temperature time: time requred to cool from the austenitizing temperature to half that temperature)

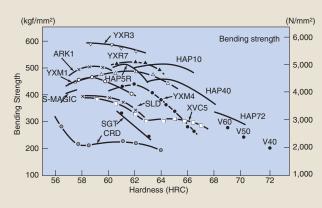
Y55 Quenched and tempered hardness curve

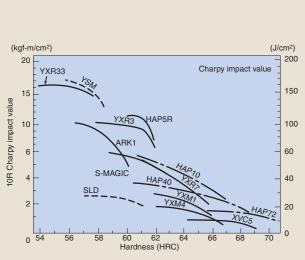
OLD WORK TOOL STEELS



YSS Quenched and tempered hardness curve

COLD WORK TOOL STEELS


YSS Properties


Abrasion resistance

The Ogoshi type abrasion tester was used to determine abrasion resistance of matched SCM415 samples, tested under the following conditions: abrasion length of 400 mm, load of 67N, and friction speed of 0.78 m/sec.

Toughness

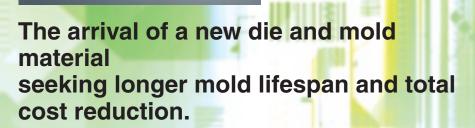
COLD WORK TOOL STEELS

Available Size Range (by Rolling)

Round and Spuare Bars

				_	_		_	_	_	_	_	_	_	_	_	_	_	_	_		_		_	_	_	_	_		_)
Shape diameter or parallel side									Rοι	und	bar										1		1	Sqı	lare	bar				
Dimension	0	0.5	1	1.5	2	2.5	3	3.5	4	5	5.5	6	6.5	7	7.5	8	8.5	9	9.5	0	1	2	3	4	5	6	7	8	9	9.5
180																														
170	٠																													
160																														
150																														
140																														
130	٠																													
120																														
110	٠																													
100	٠																													
90																														
80																														
70																														
60																														
50	٠																													
40	•																													
30	•																													
20	•					1						٠																		
10	•							•																						
0																														

(Unit: mm)


Flat Bars

Width (mm) Thickness (mm)	50	65	75	90	105	130	155	185	205	255	305	355	405	460
6	٠													
10	٠	•	•	•	٠									
13	٠	•	•	•	•	•								
16	٠	•	•	•		•								
19	٠	•	•	•	•	•								
25	٠	•	•	•	•	•	•	•	•		٠	٠		
32	٠	•	•	•	•	•	•		•		٠			
38	٠	•	•	•	•	•	•		•					•
50			•	•	•	•	•		•			٠		•
65			٠	•	•	•	•		•			٠		
75						•	•	•	•		٠	٠		٠
100							•		•		٠			
110									•		٠	٠		•
120									•		٠	٠		•
130									•		٠	٠	•	•
140									•		٠		•	•

The BEST 10 New Prodacts Nippon Brand Prize of The Nikkan sinbunn.

COLD WORKING TOOL Steel SLD MAGIC

- Considerably prolongs lifespan of molds.
- Prevents scuffing of high-tensile steels during bendingand drawing.
- Reduces reworking man-hours through minimal heatand surface treatment deformations.
- Shortens mold processing time via enhancedmachinability.
- Lowers tool expenses by extending cutting tool lifespan.

Striving for the 21st century global standard.

Concept

SLD-MAGIC (S-MAGIC) is the revolutionary next-generation die steel attaining both extended mold lifespan and outstandingly easy mold fabrication.

SLD-MAGIC

M: Materials Magic

- A : Advanced
- G: Gratifying
- I : Innovative
- C : Cold work die steel

S-MAGIC Features

Wear resistance

High hardness of 62HRC improves wear resistance by approximately 35%*.

Surface treatment

Adherence between the coating layer and steel after surface treatment (CVD and other methods) is improved by approximately 30%*.

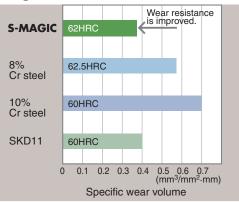
Heat treatment

Minimal deformation during heat treatment for a reduction of approximately 40%* in dimensional changes.

Machinability

Machinability improved by approximately 35%*

*Hitachi Metals comparison: Comparison against 8%Cr steel (Hitachi Metals product name:SLD8), a modified steel of SKD11.


Relationship

Wear resistance

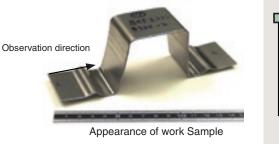
S-MAGIC increases wear resistance by approx. 35% compared with 8% Cr steel due to the control of carbide morphology.

Ohgoshi-method wear test

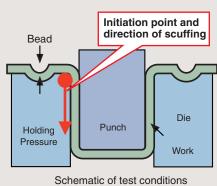
Work material: SCM415 Friction distance: 400m Friction speed: 0.76m/s Load: 67N

Comparison of Properties

Grade	S-MAGIC	8% Cr Steel	10% Cr Steel	SKD11
Hardness (HRC)	60-62	61-63	59-61	58-60
Wear resistance	O	0	0	Ô
Surface treatment*	O	\bigtriangleup	\triangle	0
Toughness	0	0	\triangle	\triangle
Machinability	O^+	\triangle	0	×
Dimensional change by heat treatment	O	\triangle	\triangle	0
Weldability	0	0	\triangle	\triangle
			© O+	ΟΔ×


Excellent Poor

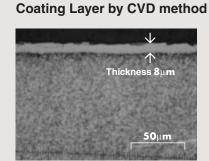
*Surface treatment properties are based on adherence between the coating layer and steel after surface treatment.

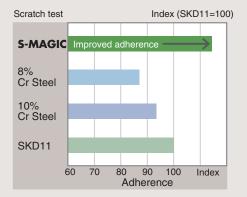

8%Cr steel and 10%Cr steel offer improved machinability for better processing that reduces the volume of hard carbides within steel, but are inferior to SKD11 in terms of wear resistance and galling.

Scuffing resistance

S-MAGIC shows no scuffing on Hat Testing simulating practical mold wear phenomena.

Scuffing Test


Scuffing Test Conditions Press : 80ton Cranck Press Velocity V : 40~75spm (19.2~36m/min) Holding Pressure Ps : ~2.4ton/cm² Length of Stroke : 60mm Lubricant : Anti-rustoil applied and wiped away Work : High-tensile-strength steel (590MPa) Thickness 1.6mm (No plating) Surface Roughness of the mold: Polished by #1000 (Ra=0.04µm)


Surface treatment

S-MAGIC can be treated with hard coating (CVD, TD treatment etc.) under the same conditions as SKD11 S-MAGIC improves adherence between the coating

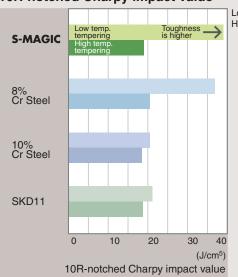
layer and steel after 3-time surface treatment by approx. 30% when compared with 8%Cr steel, due to optimum alloy design.

Adherence between the coating layer and steel after 3-time CVD treatment.

Weldability

S-MAGIC shows lower susceptibility of cracking by welding compared with SKD11 and others.

Pre-heating temperture	S-MAGIC	SKD11	8%Cr Steel	10Cr Steel
Under 100°C	××	××	××	××
100~200°C	0	××	××	××
200~300°C	0	××	0	××
Over 300°C	-	0	0	0
ranking of anti-cracking	1	3	2	3

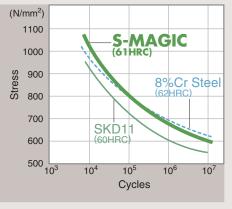

××: Cracking occured at 3rd layer

○ : No cracking at 3rd laye

Toughness

S-MAGIC is superior to SKD11 in toughness. It can be used as a countermeasure to chipping and cracking with low temp. tempering.

10R-notched Charpy impact value



Low temp.: 200°C High temp.: 510-520°C

Fatigue strength

S-MAGIC shows improved fatigue strength in comparison to SKD11 due to the control of carbide morphologies.

Rotating bending fatigue test

Physical Properties

Thermal expansion coefficient	20~100°C	20~200°C		
X10 ⁻⁶ /°C	11.7	12.3		
Specific gravity	Annealed	Quenched and tempered		
opeonie gravity	7.77	7.76		
Transformation	Ac1	Ms temperature		
temperature	850°C	166°C		

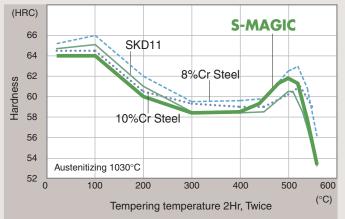
Thermal conductivity	Room temperature
W/m⋅K	28.9
Young's modulus GPa	209

Heat Treatment

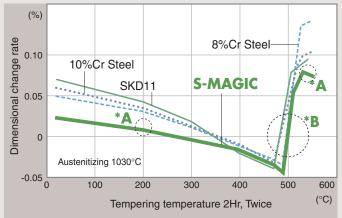
It is possible to heat treat S-MAGIC under the same conditions as SKD11.

It is possible to obtain maximum hardness (60~62HRC) with tempering at around 500°C where dimensional change is near to zero, achieving both high hardness and less dimensional change.

Secular change of S-MAGIC after high temp. tempering is almost equivalent to that of SKD11, and smaller than 8% Cr steel. It is possible to reduce secular change via low temp. tempering, sub-zero treatment or stabilizing.

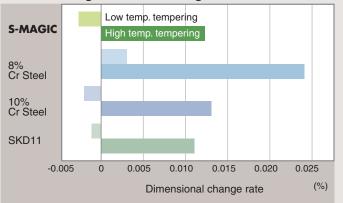

> Size of test pieces: 45T X 90W X 200L Austenitizing: 1030°C Low temp. tempering: 180°C X 2times High temp. tempering: 520°C X 2times Measure: 200mm direction Dimensional change after 6 months

posterior heat treatment


Standard Heat Treatment Conditions

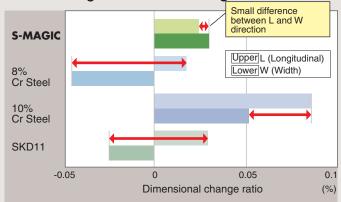
Annealed Hardness	Austenitizing	Tempering	Hardness (HRC)
≤ 255HBW	1010~1040°C Air quenching	480~530°C Air cooling or 150~250°C Air cooling	≥ 60

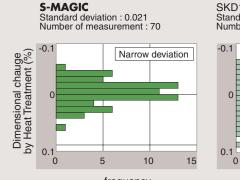
Quenched and tempered hardness

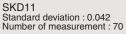


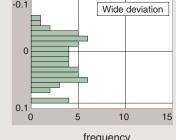
Dimensional change after heat treatment

*A: Minor dimensional change *B: Minor dimensional change with maximum hardness

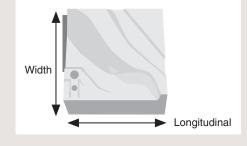

Secular change / Dimensional growth


Heat Treatment


S-MAGIC shows smaller in dimentional change difference in the longitudinal, width and thickness directions, compared to SKD11 or 8% Cr steels.


Secular change/Dimensional change

Deviation comparison of dimensional changes of actual mold after heat treatment.



frequency

frequency

Grade	Direction	(mm) Original Dimension	(mm) demensional Change	(%) demensional Change ratio	Mold set up time	
	W	295	-0.030	-0.010	46	54% reduction
S-MAGIC	L	250	+0.010	+0.004	40	ajusting time after heat treatment
SKD11	W	295	-0.090	-0.031	100(Index)	
GRUTT	L	250	+0.130	+0.052		

Example of dimensional change for insert type mold.

S-MAGIC shows narrow deviation of dimensional changes by heat treatment, as a result, the better dimensional tolerance can be attained.

For example, in case of separation type molds, mold set up time was largely decreased because of narrow dimensional deviation.

Machinability

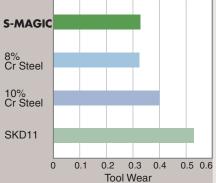
S-MAGIC improves machinability on face mill by over twice that of SKD11 and by approx. 35% compared to 8% Cr steel. It also demonstrates superior machinability using other tools.

Mold processing time is shortened due to enhanced machinability.

The lifespan of cutting tools is increased, thus reducing direct purchasing costs of tools.

ø125 Face Mill

Work: Annealed condition Tool: Coated carbide chip, 1chip only Cutting speed: 120m/min,


Dry Feed: 0.13mm/blade Depth of cut: 2^z X 90^wmm, Cutting distance: 4m

End Mill

Work: Annealed condition Tool: End mill ø8 (Co-HSS) Cutting speed: 30m/min,Downcut,Wet Feed: 0.05mm/tooth Depth of cut: 15² X 0.5^wmm, Cutting distance: 5m

Drill

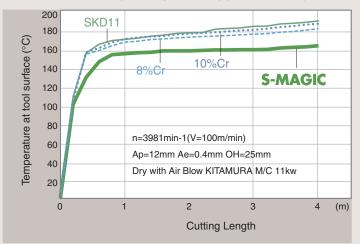
Work: Annealed condition Tool: Drill ø5 (Co-HSS) Cutting speed: 20m/min, Wet Feed: 0.05mm/ev Depth of hole: 25mm, 200Holes

ø63 High feed cutter

COLD WORK TOOL STEELS/SLD-MAGIC

Machinability

S-MAGIC can enhance tool lives because of lower cutting tool temperatures.


S-MAGIC

SKD11 (Tempered color)

Cutting tool temperature comparison

CEPR6080 (ultrafine particle WC) (ø8 X 6NT TiAIN)

Grindability

Grindability of S-MAGIC is better than those of SKD11 and 10% Cr steel, and almost equivalleut to 8% Cr steel.

Grindability comparison as a function of diffenent grinding wheels

• Work 50 X 90 X 200L

- (Heat treated condition)
- Machine: Reciprocal Type
 Grinding Wheel
 a: Aluming Single Crustal
- a: Alumina Single Crystal b: Alumina c: Alumina + Other ceramics

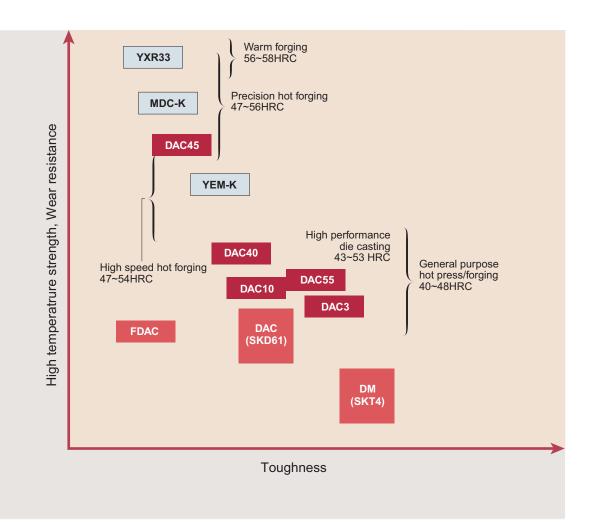
Grinding Conditions

- Wet Traverse Grinding
- Velocity of Wheel 33m/sec • Table velocity 0.33m/sec
- Table velocity 0.33m/s
 Undercut 5µm/pass
- Cross Field 5mm/lap
- Spark out 1lap
- Total undercut 0.1mm
- Grinding ratio Ground off amount/wear of wheel
- Grinding ratio is higher the better

Application Examples

In addition to prolonging the lifespan of molds, S-MAGIC also enables remarkably easy mold fabrication, thereby contributing to total cost reduction and shorter processing times in the automobile and mold industries.

		Present condition	Evaluation	
01	Grade	SKD11	S-MAGIC	
	Hardness	59~61HRC	60~62HRC	
Bending die for automotive parts	Heat treatment	High temp. Tempering	High temp. Tempering	Scuffing
Inner parts	Surface treatment	CVD (TiC)	CVD (TiC)	
Work 440MPa (t3.2)	Lifespan	1,300 pcs	156,000 pcs	
	Cause			Mold lifespan significantly
	Cause	Severe galling	Less galling	improved
02		Present condition	Evaluation	
	Grade	SKD11	S~MAGIC	
Blanking die for	Hardness	58~60HRC	58~60HRC	
automotive parts	Heat treatment	170°C Tempering	170°C Tempering	** • • • • • • • • • • • • • • • • • •
Work 590MPa (t7.0)	Machinability	Bad	Good	Chipping
	Lifespan	15,000 pcs Max.	40,000 pcs carrying on	Mold lifespan
	Cause	Severe chipping	Less chipping	more than doubles
		Present condition	Evaluation	
03	Grade	SKD11	S-MAGIC	
Blanking die for	Hardness	58~60 HRC	58~60 HRC	
electrical	Heat treatment	530°C Tempering	530°C Tempering	
appliances	Machinability	Bad	Good	
Electrical appliances Work Film	Lifespan	650,000 pcs	1,020,000 pcs	
	Cause	Early wear out	Less wear	Mold lifespan 50% up
		Present condition	Evaluation	
04	Grade	SKD11	S-MAGIC	
	Hardness	60~62HRC	60-62HRC	
Blanking die for electrical	Heat treatment	200°C Tempering	480°C Tempering	
appliances	Machinability	Bad	Good	
Optical parts Work SPCC (t0.8)	Lifespan	100,000 pcs	100,000 pcs carrying on	
	Cause	Burr (Wear out)	Reduce wear by half	Mold lifespan doubles
05	Queda	Present condition	Evaluation	
	Grade	8%Cr Steel		
Blanking die for	Hardness	60-62HRC	60~62HRC	
electrical appliances	Heat treatment	505°C Tempering	480°C Tempering	
Liquid crystal panel parts	Dimensional change	0.05%	-0.01-0.02%	
Work SUS304 (t0.3)	Lifespan	30,000 pcs	40,000 pcs carrying on	Mold lifespan 30% up
	Cause	Burr (Wear out)	Less wear	


Note: The above-listed data is for application examples only and this data does not assure performance. It is not suited for molds with EDM finished surface that require a high degree of mirror finish such as plastic molds.

06		Present condition	Evaluation	
	Grade	SKD11	S-MAGIC	
Die for hydroforming	Hardness	56HRC	58HRC	
Exhawst pipe Work Steel tube	Heat treatment	High temp. Tempering	High temp. Tempering	
	Distortion by heat treatment	Very hard to adjusting the upper and lower die blocks clue to large dimensional changes	Reduction of adjusting time of the upper and the lower die blocks	Mold adjusting time is reduced because of small dimension change of upper and lower die
	Machinability	Bad	Improved. Adjusting is finished only by one chip used.	blocks by heat treatment
		Present condition	Evaluation	
07	Grade	SKD11	S-MAGIC	
	Hardness	58~60HRC	60~62HRC	
Die for cold press Automobile parts Work Hight-tensile -strength steel	Heat treatment	High temp. Tempering Large dimensional ohange	High temp. Tempering Deviation is reduced to 1/2. Ajusting time is reduced	
	Surface treatment	TD	TD	
	Cause	Ball End Miuing Exchanging chips quite offen	The number of exchanged chips is reduced o 1/5~1/10 compared to SKD11. Feed rate is increased to 1.7 times.	Small dimension deviation
		Present condition	Evaluation	
08	Grade		S-MAGIC	
		SKD11		• •
Die for cold press	Hardness	58~60HRC	60~62HRC	
Inner parts Work 440MPa (t2.3)	Heat treatment	High temp. Tempering	High temp. Tempering Dimensional Changes by TD is	
	Surface treatment	TD	within 5/100	
	Lifespan	5500 pcs	Continuing beyond 15,000	Mold lifespan is improved by almost 3 times.
	Problem	Scuffing		.,
		Present condition	Evaluation	
09	Grade	SKD11	S-MAGIC	
Die for cold press	Hardness	59~61HRC	60~62HRC	/
Inner parts	Heat treatment	High temp. Tempering	High temp. Tempering	
Work 780MPa (t2.3)	Surface treatment	TD	Dimensional Changes by TD is small	
	Machinability	Bad	The life of chips used is 10 times longer than SKD11 cases.	Small dimension changes after TD treatment
	Problem	Mochinabiliry and dimension change		

Note: The above-listed data is for application examples only and this data does not assure performance. It is not suited for molds with EDM finished surface that require a high degree of mirror finish such as plastic molds.

YSS Hot working tool Steels

Characteristics of YSS Hot Work Tool Steels

HOT WORKING TOOL STEELS

Applications and YSS grade Features

Grade			
YSS	JIS equivalent	Applications	Features
DAC	C SKD61 Hot forging dies, Extrusion dise, Die casting dies.		General-purpose hot-working tool steel used in a wide range of applications.
DAC3	_	Hot forging dies, Extrusion dise.	A hot-working tool steel which has improved hardenability and greater toughness than DAC, and helps avoid cracking in hot- working press dies, high-hardened AI extrusion dies.
DAC10	_	Die casting dies, Extrusion dies.	Steel for precision die casting and hot-working press die which has excellent heat crack resistance and wear resistance.
DAC40	_	Extrusion dies.	Al extrusion die steel and hot-working press die steel which has better high-temperature strength and softening resistance than DAC.
DAC55	_	Die casting dies.	Tool steel for large or squeeze die casting moulds with excellent heat crack resistance.
ҮЕМ-К	_	Hot forging dies.	Hot-working tool steel with the improved high-temperature strength and toughness of JIS-SKD7 steel.
MDC-K	_	Hot forging dies.	Very high-strength hot working tool steel with the improved toughness of JIS-SKD8.
DAC45	_	Die casting dies, Hot forging dies.	Has great high-temperature strength and outstanding crack resistance, and is suited for hot-working press dies requiring wear resistance and high Si-Al die-cast molds requiring erosion resistance.
YXR3	_	Hot forging dies.	High-toughness matrix high speed steel.
YXR33	_	Hot forging dies, Anti-meltdown insert pin.	High-toughness matrix high speed steel for hot-working tools, and excellent wear resistance and crack resistance. Can withstand high-temperature loads such as in warm-and hot-working precision forging dies.
DM	SKT4	Hammer dies.	Tool steel for hammer dies.
FDAC	_	Dies for small lot, Simple dies Holding lock.	Free-cutting hot-working tool steel.

HOT WORKING TOOL STEELS

Chemical compositions of YSS hot-working tool steels

YSS	Grade					Chemio	cal comp	osition				
133	JIS equivalent	с	Si	Mn	Р	s	Ni	Cr	w	Мо	v	Co
DAC	SKD61	0.39	1.0	0.40	≤ 0.030	≤ 0.010	_	5.15	-	1.40	0.80	_
DAC3	(Original steel)	High toughness die steel										
DAC10	(Original steel)		High-strength die steel									
DAC40	(Original steel)				ŀ	ligh-strer	ngth Al ex	xtrusion c	lie steel			
DAC55	(Original steel)				Hi	gh-strenç	oth and to	oughness	die steel			
ҮЕМ-К	(Original steel)					Hig	h-strengt	h die stee	əl			
MDC-K	(Original steel)					Hig	h-strengt	h die stee	əl			
DAC45	(Original steel)					Hig	h-strengt	h die stee	əl			
YXR3	(Original steel)					Mat	rix high s	peed ste	el			
YXR33	(Original steel)	Matrix high speed steel										
DM	SKT4	0.55	0.25	0.85	0.030	≤ 0.010	1.65	1.20	-	0.35	0.15	_
FDAC	SKD61 Free cutting	0.39	1.00	0.65	0.030	0.130	_	5.15	-	1.40	0.55	_

*Harmful impurities such as S, Cu and Ni are restricted to below JIS levels using Hitachi Metals' own high-quality raw materials.

Heat Treatment

Standard heat treatment conditions for YSS hot-working tool steels

Questa	Annealing		Quenching	Tempering	J
Grade	Temperature	Hardness (HBW)	Temperature	Temperature	Hardness (HRC)
DAC	820-870 Slow cooling	≤ 229	1000-1050 Oil cooling(Air cooling)	550-650 Air cooling	≤ 53
DAC3	820-870 Slow cooling	≤ 229	1000-1050 Oil cooling(Air cooling)	550-650 Air cooling	≤ 53
DAC10	820-870 Slow cooling	≤ 229	1010-1030 Oil cooling(Air cooling)	550-650 Air cooling	≤ 53
DAC40	820-870 Slow cooling	≤ 229	1000-1050 Oil cooling	550-680 Air cooling	≤ 53
DAC55	820-870 Slow cooling	≤ 229	1010-1030 Oil cooling(Air cooling)	550-650 Air cooling	≤ 53
YEM-K	820-870 Slow cooling	≤ 229	1000-1050 Oil cooling(Air cooling)	550-650 Air cooling	≤ 53
MDC-K	820-870 Slow cooling	≤ 241	1050-1140 Oil cooling	600-700 Air cooling	≤ 55
DAC45	820-870 Slow cooling	≤ 241	1060-1080 Oil cooling	580-650 Air cooling	≤ 55
YXR3	800-880 Slow cooling	≤ 241	(1)1150-1170,(2)1130-1150 Oil cooling	560-590 Air cooling	≥ 57
YXR33	800-880 Slow cooling	≤ 241	1080-1160 Oil cooling	550-600 Air cooling	≥ 56
DM	750-800 Slow cooling	≤ 241	830-880 Oil cooling	400-650 Air cooling	≤ 50
FDAC	-	-	Delivery in preharden	lened condition 38-42	

(1) Simple shape tools

(2) The others, especially needs toughness

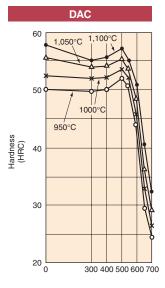
Quenching and tempering time of YSS die steels

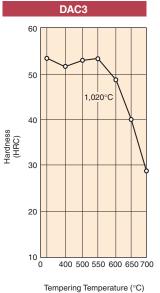
1. Holding time at hardening temperature

(1) Preheating time

First stage: $500 \sim 550^{\circ}$ C hardening temperature holding time x 2 Second stage: $750 \sim 800^{\circ}$ C hardening temperature holding time x 1 But preheating can be omitted when the electrical furnaces process is used or when workpieces are 50mm or under in thickness or a simple shape.

(2) Holding time at hardening temperature


Furnace	Thickness(mm)	≤ 15	25	50	75	100	125	150	200	300
Electrical furnace, Salt bath	Holding time(min)	15	25	40	50	60	65	70	80	100


Caution: The salt bath needs preheating. Set the Soaking time same as the holding time.

2.Holding time at tempering temperature

Thickness (mm)	≤ 25	26-35	36-64	65-84	85-124	125-174	175-249	250-349	350-499
Holding time (h)	1	1.5	2	3	4	5	6	7	8

Y55 Quenched and tempered hardness curve

YEM-K

1.050°C

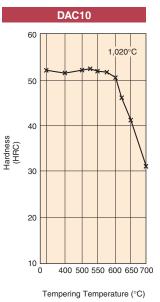
1,000°

950°

400 500 550 600 650 700

60

50


40

30

20

10 L 0

Hardness (HRC)

MDC-K

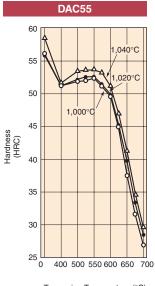
,090

1,050°Ć

1,130°C

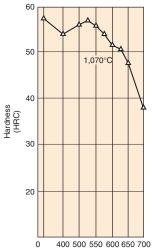
60

50

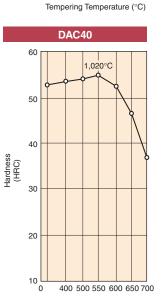

40

30

20

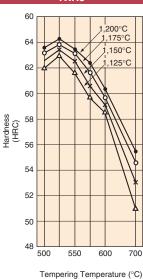

0

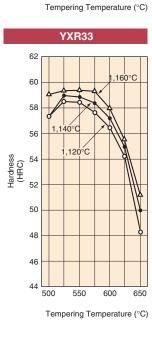
Hardness (HRC)

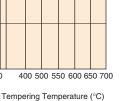


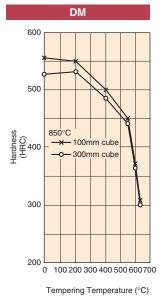
Tempering Temperature (°C)

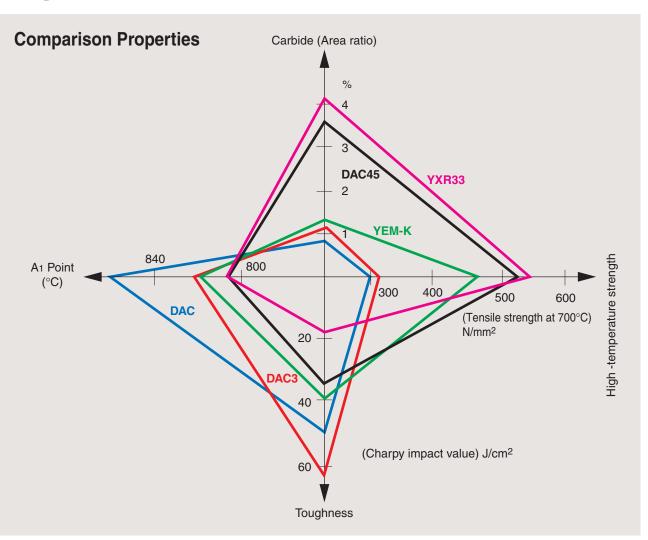
DAC45

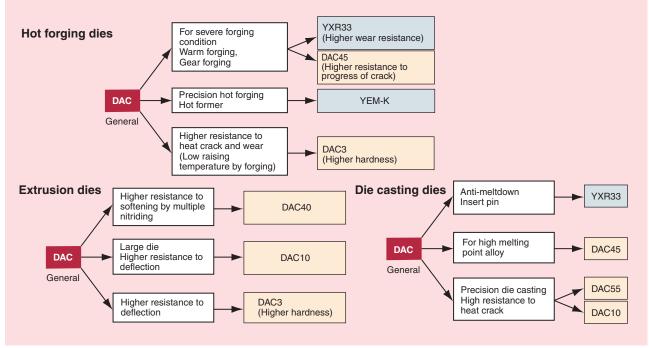



Tempering Temperature (°C)



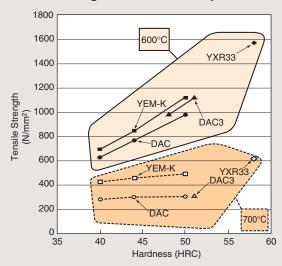

Tempering Temperature (°C)



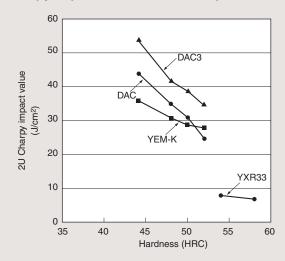


6

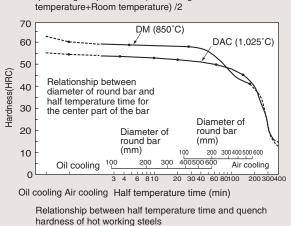
Properties

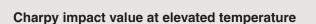


Guide for selecting die materials (example)

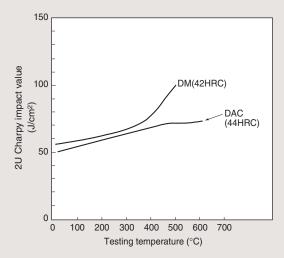


Properties

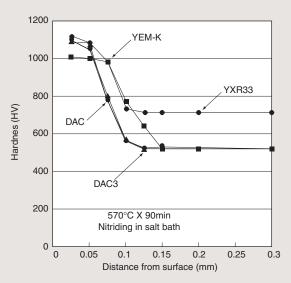

Tensile strength at elevated temperature


Charpy impact value at room temperature

Hardenability



Half temperature time=Time required for cooling from quenching temperature to (Quenching



Tempering parameter

19

Nitriding property

Tempering parameter

P=T (20+log t) /10³ T:Temperature(k)

18

t:Time(h)

17

600

500

400

300

200

Hardness (HV) YXR33

MDC-K YEM-K

DAC DM

20

21

22

Properties

1.Coefficient of thermal expansion

[X10⁻⁶/°C]

Grade	200°C	400°C	600°C	700°C
YXR33	11.6	12.1	13.0	13.2
DAC45	10.5	12.4	13.3	13.6
DAC10	11.1	12.3	13.8	13.2
DAC	DAC 12.5		13.8	14.0
DM	12.1	13.1	13.5	13.8

2. Thermal conductivity

Grade	20°C	200°C	400°C	600°C	700°C
YXR33	27.2	28.1	29.3	29.7	29.7
DAC45	26.4	27.6	28.9	28.1	27.6
DAC10 32.2		31.4	30.6	29.3	28.5
DAC	30.6	30.1	29.3	29.5	28.5
DM	36.0	39.4	37.7	36.0	35.2

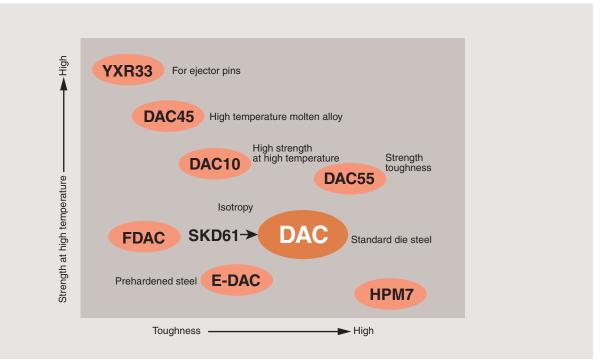
1.Modulus of elasticity

[GPa]

[W/(m·k)]

Grade	20°C	200°C	400°C	600°C
DAC	206	196	178	132
DM	211	204	190	141

YSS DIE STEELS FOR DIE CASTING DAC Series


In compliance with changes of die casting technology

YSS Correlation for Diecasting Die steels

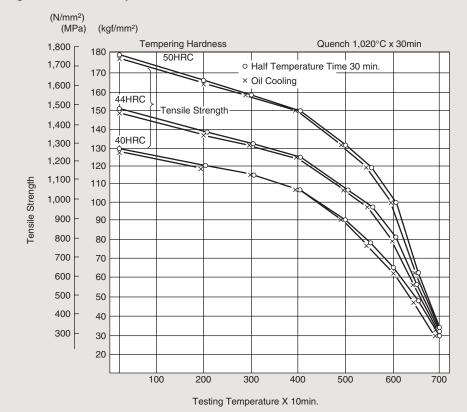
In compliance with diversification of diecasting technology, variety of steel grade is prepared in order to best fit for each individual application.

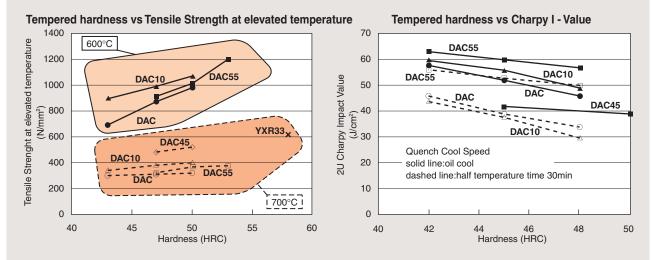
Die Steel for Diecasting Die-Kind and Features

Applications	Steel Brand	Features
Die for Aluminium/Zinc Alloy in general use	DAC equivalent to JIS SKD61 0.38C-5Cr-1.3Mo-1V	Strength at elevated temperature and toughness are well balanced. Good machinability and less deformation after heat treatment.
High efficiency die, Squeeze die	DAC55 5Cr-Mo-V-Ni-Co	Superior heat crack resistance. Higher toughness enables initial hardness of dies much higher.
Precision Die Cast Die	DAC10 5Cr-2.5Mo-V	Higher strength at elevated temperature and good heat crack resistance.
Die for high melting point aluminium alloy and copper alloy	DAC45 3.5Cr-W-Mo-V	Higher strength at elevated temperature. Good crack development resistance.
Longer life pin, insert die parts	YXR33 Matrix HSS	Highest strength at elevated temperature. Best erosion resistance.
Die for small lot, Simple die	FDAC SKD61+S Sulphurized DAC	Standard hardness is 40HRC. Delivered prehardened.
Simple die Core, Backblock	HPM7 Mn-Cr-Mo	Prehardened to 32HRC.Good machinability & Toughness. Least difference of hardness between surface and center of large mold.

Appearance of Heat Crack and Test Result

Heat crack	Appearance	Cross Section		
Diecast in general use On the flat surface of dies Network Temperature of molten material	0.1mm	0.1mm		
Precision/Hi-Si Al-alloy Diecast On the edge of dies Crack openning Temperature of molten material	۵ ۵	<u>P.1mm</u>		
Diecast in SQ use At the corner of dies Stress concentration Temperature of molten material		0.4mm		


Number of cycles of heat crack initiation and cross sectional appearance


Test: Repetition of Heating upto 600°C by high frequency and Cooling by spray water. Specimen used is one end of dia 90mm bar.

No. of test cycle cycle					
Steel Brand	HRC	1000	2000	3000	Cross sectional 0.5mm appearance
DAC	43				
DAC	47	Occurance of heat c		on of heat crack	
DAC	51				
DAC10	47				1 1 ju
DAC55	50				
DAC55	53				

Mechanical Properties

Tensile Strength at elevated temperature

Physical Properties

	Temperature	DAC	DAC10	DAC55	DAC45	YXR33
Thermal Expansion Coefficient X 10 ⁻⁶ /°C	100°C	11.7	10.7	11.6	10.5	11.6
	700°C	14.0	13.2	13.7	13.6	13.2
Thermal Conductivity W/m·K[cal/cm·s·°C]	20°C	30.5 [0.073]	32.2 [0.077]	34.5 [0.082]	26.4 [0.063]	27.2 [0.065]
	700°C	28.0 [0.067]	28.5 [0.068]	28.0 [0.067]	27.6 [0.066]	29.7 [0.071]

DIE STEELS FOR DIE GASTING / DAG Series

DAC

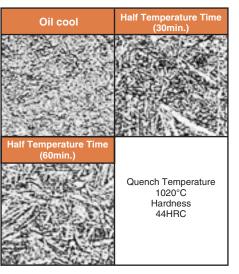
DAC Standard Quality for Aluminium Diecasting

DAC is most widely used as Die for Aluminium and Zinc Diecasting. DAC is hot working tool steel with good balance of strength, toughness and heat resistance. With introduction of Isotoropy technology DAC has become tougher and more isotropic to help life of dies longer and stable.

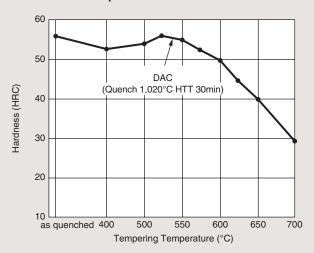
Features

- *Good balance of both strength at elevated temperature and toughness.
- *Good machinability with less deformation after heat treatment.

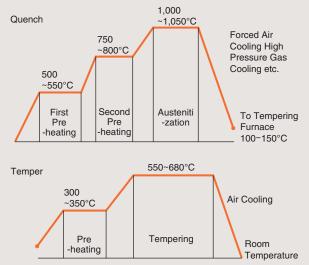
Applications


- *General die for Aluminium Diecasting.
- *Die for Zinc Diecasting.
- *Die for low pressure casting.
- (Remarks)

Both forged and cast steel available for low pressure casting die with prehardened condition of 30-40HRC.


Hardend hardness

45~48HRC general size dies. 43~46HRC big size dies.


Quench cooling speed and Microstructure (X400)

Quenched & tempered hardness

Standard Heat Treatment Process

Tempering is required at least two times or more.

Tempered hardness vs Charpy I-Value

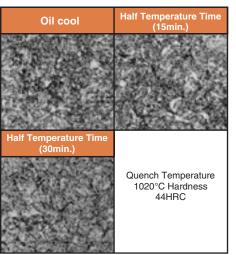
DAC55

DAC55 For High Performance Diecasting

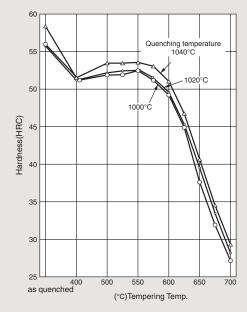
DAC55 has been developed in responding to the needs for a longer die life or a steel with good hardenablity as well as heat crack resistance and toughness for large and medium size dies.

Features

- *Good heat crack resistance.
- *Higher service hardness of 50-53HRC.
- *Higher resistant to crack development.
- *Higher strength at elevated temperature.
- *Good hardenability.


Applications

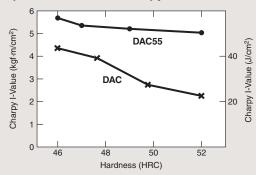
*Precision diecasting die. *Big and medium dies for diecasting. *Squeeze diecasting die.


Standard Heat Treatment

Quench 1010-1030°C quick cool Temper 550°C-640°C Hardness 43-53 HRC

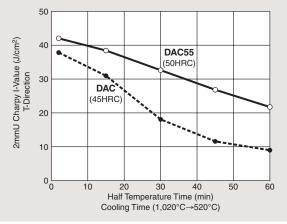
Quench cooling speed and Microstructure (X 400)

Quenched & tempered hardness



Recommended hardness

Hardness (HRC)	Application					
50-53	Small / Squeeze Die (Anti-Heat Crack)					
46-50	General Use Die					
43-46	Large Die (Priority: Toughness)					


(Remarks) Recommended hardness may not apply depending on projection or casting conditions

Tempered hardness vs Charpy I-Value

Quench Cool Speed vs Charpy I-Value

(Test Result of 250mm Qubic Block)

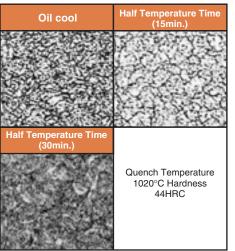
DAC10 For Precision Diecasting

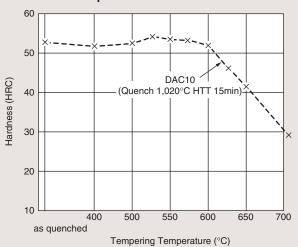
As material of die for diecast products required higher level of surface, and heat crack resistance has been intensified.

Most useful for small and medium size dies of their longer life.

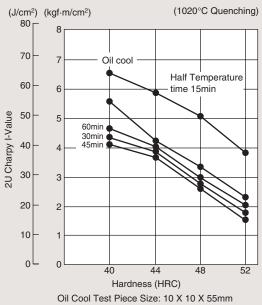
Features

- *Higher strength at elevated temperature and good heat crack resistance.
- *Good erosion resistance.

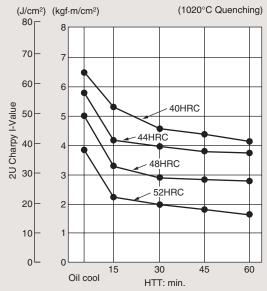

Applications


- *Small / Medium size dies of which O-ring grooves require heat crack resistance.
- *Medium dies for products like headcover which requires good appearance.
- *Small dies for VTR parts or OA components which require erosion resistance.

Standard Heat Treatment


Quench 1010-1030°C quick cool Temper 570°C-610°C Hardness 44-51 HRC

Quench cooling speed and Microstructure (X 400)



Tempered hardness vs Charpy I-Value

Quench Cool Speed vs Charpy I-Value

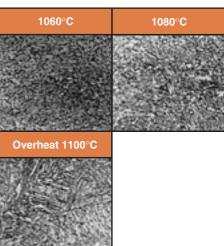
Quenched & tempered hardness

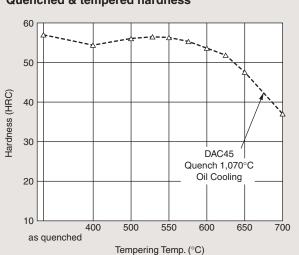
DAC45 For Diecasting Al-Alloy containing high Silicon

Exclusively developed for dies used in elevated temperature casting of 750°C molten steel. Superb erosion resistance.

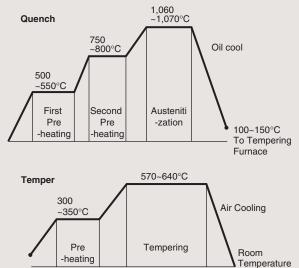
Features

*Exceptional high strength at elevated temperature. *Higher resistant to crack development.

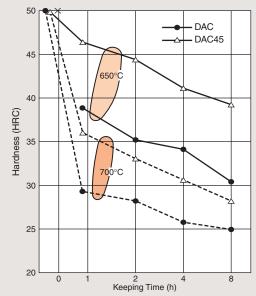

Applications


*Die for High Silicon Aluminium Diecasting like ADC14. *Die for Copper Alloy Diecasting. *Erosion resistant pin, insert die parts.

Standard Heat Treatment


Quench 1060-1070°C oil cool Temper 570°C-610°C Hardness 47-51 HRC

Quench temperature and Microstructure (X 400)



Standard Heat Treatment Process

Tempering is requuired at least two times or more.

Softening Resistance

Quenched & tempered hardness

YXR33

YXR33 For High quality Insert Pin

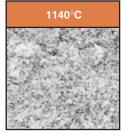
YXR33 is a HSS with higher toughness which solved breakage problem often existed in SKH51.

Fitted for insert pin or other inserts exposed to critical wear due to erosion.

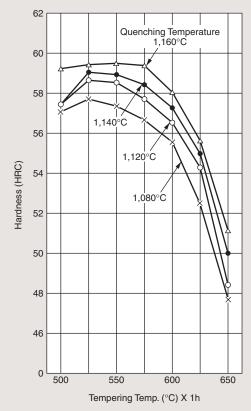
Features

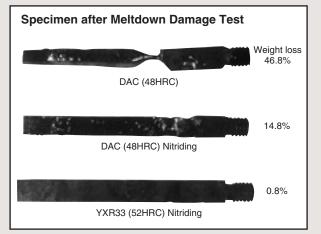
*Highest strength at elevated temperature among HSS and Alloy Tool Steel.

*Toughness is more than 5 times as big as SKH51. *Excellent nitridability.

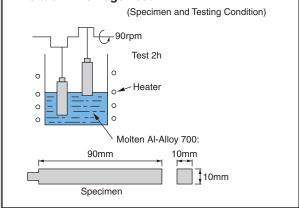

Applications

*Erosion resistant insert pin. *Insert die parts.


Standard Heat Treatment


Quench 1080-1140°C oil cool Temper 550°C-600°C Hardness 52-58 HRC

Microstructure as quenched & tempered (X 400)



Quenched & tempered hardness

Meltdown Damage Test

FDAC/HPM7

Prehardened free machining die steel

FDAC

FDAC is based on DAC for main components with addition of Sulphur for machinability. As delivered prehardened to 38-42HRC, direct cavity making is possible.

HPM7

HPM is prehardened to 29-33HRC and has good machinability.

Features

*Good machinability.

*As delivered prehardened, no futher heat treatment is necessary.

 $\rightarrow \mbox{Possible}$ to reduce manufacturing time and total cost.

Applications

Die for small lot , simple die, plain die, holding lock. FDAC•••priority strength. HPM7•••priority & toughness machinability.

Machinability

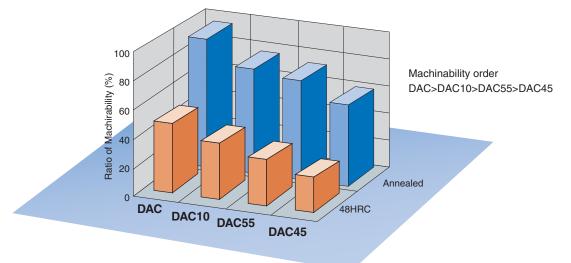
Cutting condition

Face milling					
Cutter	f63				
Insert	Coated cemented carbide				
Number of inserts	1				
Cutting speed	130m/min				
Feed	0.15mm/Tooth				
Depth	0.5mm				
Coolant	dry				
Life	VB=0.3mm				

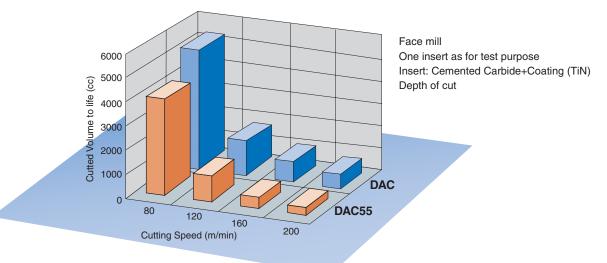
	Drilling
Tool	HSS Co ¢4
Cutting speed	20m/min
Feed	0.1mm/rev
Depth	40mm (Blind)
Coolant	Water-Soluble
Life	Number of cutting hole

Mechanical Properties (Reference)

	Hardness (HRC)	0.2% Yielding Strength (MPa)	Tensile Strength (MPa)	Elongation (%)	Reduction of Area (%)
DAC	40	1070	1250	12	58
FDAC	40	1060	1240	11	20
HPM7	32	860	980	20	55


Charpy I - Value (Reference)

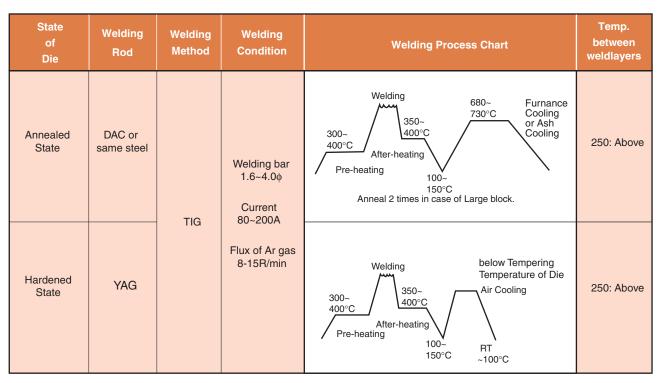
	Hardness (HRC)	Longitudinal direction (J/cm ²)	Transverse direction (J/cm²)
DAC	40	58	39
FDAC	40	19	10
HPM7	32	67	61


Size of Raw Material: 280 X 640 Position of Specimen: w/2 X t/4

Machinability

Comparison of machinability by Endmill machining

Comparison of machinability by Facemill machining


Cutting condition by Endmill (Reference)

	DAC			DAC10		DAC55		
Tool Material	Annealed condition	43HRC	48HRC	Annealed condition	48HRC	Annealed condition	48HRC	51HRC
Powder HSS	V=25 f=0.07	V=20 f=0.05	n. a.	V=15 f=0.07	n.a.	V=15 f=0.07	n. a.	n. a.
Powder HSS+Coating	V=30 f=0.07	V=25 f=0.05	n. a.	V=20 f=0.07	n. a.	V=20 f=0.07	n. a.	n. a.
Cemented Carbide+Coating Standard edge	V=45 f=0.05	V=35 f=0.03	V=25 f=0.03	V=35 f=0.05	V=15 f=0.03	V=35 f=0.05	V=17 f=0.03	V=15 f=0.03
Cemented Carbide+Coating Hi-speed edge	V=50 f=0.08	V=40 f=0.05	V=30 f=0.05	V=50 f=0.08	V=25 f=0.05	V=50 f=0.08	V=30 f=0.05	V=25 f=0.05

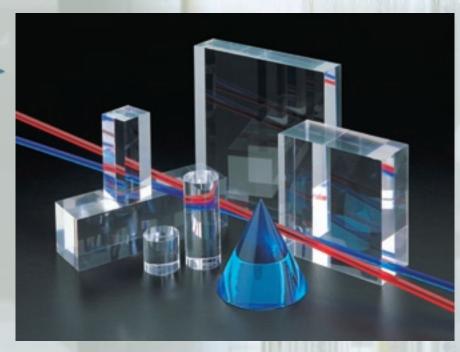
Repair Welding

Followings show standard repair welding method in build-up welding due to design change or repair welding due to heat crack.

Material involved : DAC, DAC55, DAC10, DAC45, FDAC, E-DAC.

Remarks

- YAG is a brand name of Hitachi Maraging Steel used for various applications including high grade welding rod. Using YAG welding rod remarkably decreases such welding defects as "bead crack" or "pin holes".
- **2.** TIG Welding Method (Tangsten Inert Gas Welding Method) is to make arc between tangsten electrode covered by argon gas and objects to be welded, and then wire is inserted into the heat pool generated by the arc.
- **3.** Use lower current and finer welding wire in order to get better efficiency of welding metal. In order to prevent crater cracks, avoid an overlap of the crater of backward pass on the crater of foregoing pass.

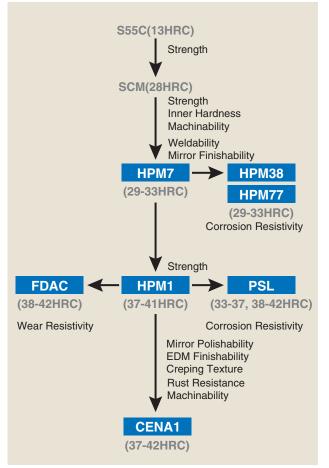

To avoid an overheat of mother material, conduct an interrupted welding with short bead.

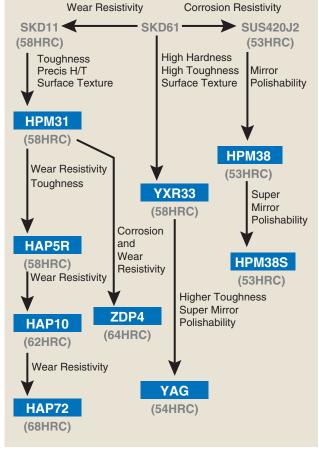
- 4. Keeping time of Temper and Anneal after welding should be 1h/25mm in thickness.
- 5. A careful attention is to be paid of crack during grinding.

Actual Performance by Customers

Diecast Products Machine Capa		Comparision of Actural Performance by Customers				
Brand	(die size mm)	Current	Application			
Autoparts surface priority	800ton 120X210X300	DAC (44HRC) 37K shot 1st heat crack	DAC (48HRC) 50K shot 1st heat crack	1.35 times		
OA Components (precision die)	250 ton 80X200X300	DAC15K shot 1st heat crack 30K shot repair. 80K shot scrap	DAC10 24K shot 1st heat crack. No grinding repair. 120K shot scrap	1.6 times min.		
OA Components (precision die)	650 ton 90X215X380	DAC 1K shot 1st bite 30K shot scrap	DAC10 10K shot no bite	3 times min		
Autoparts surface priority	2000 ton	DAC (47HRC) 60K shot heat crack	100K shot still on service	1.6times min.		
Autoparts	2500 ton	DAC (43HRC) heat crack	DAC55 (48HRC) later heat crack	4 times		
Autoparts (thin insert)	n.a.	DAC 20K shot breakage	DAC55 40K shot and more	2 times		
Wheel	1800 ton	DAC/DAC4 heat crack	2 times shot of DAC/DAC4 before crack	2 times		
P/Computer Case (Mg)	n.a.	DAC 5K shot heat crack	DAC55 25K shot no repair	5 times min		
High melting point Al-alloy autoparts	320 ton 90X200X300	DAC 5K shot 1st heat crack	DAC45 10K shot 1st heat crack but still in service	2 times		
High melting point Al-alloy autoparts	Insert	DAC (52HRC) 3.5K shot meltdown	DAC45 (52HRC) 13K shot meltdown	4 times		
Autoparts	Insert Pin	DAC 3K shot meltdown & galling	YXR33 10K shot still on service	3 times		
High melting point Al-alloy autoparts	Insert Pin	SKH51 (60HRC) 2K shot breakage	YXR33 (54HRC)+TiN 20K shot meltdown	10 times		

PLASTIC MOLD STEELS HPM Series


In compliance with advanced plastic molding technology


YSS plastic mold steels "HPM" series are increasing popularity in compliance with advanced plastic molding technology. "HPM" series are fulfilling demands of plastic industry for molds that provide crepe-and mirror-finishability and mold durability for corrosive gas generating and reinforced resins.

Group	Hardness	Crede	Material Truce	Annilia Alian Europala
Gro	Employed (HRC)	Grade	Material Type	Application Example
		HPM7	P20 improved	Mold required good weldability & machinability (Autoparts, Home electronics, House eguipment)
	29~33	НРМ38	420 improved	Flame retardant resin, Transparent parts, Rubber
		HPM77	420 improved & resulpherized	Corrosion resistant mold plates, Rubber mold
bed	(Round Bar) 38~42 (Flat Bar) 33~37	PSL	630 improved	Mold for polyvinyl chloride, Frothy resin, Rubber
Prehardened	37~42	CENA1	Cr contained NiAl precipitation grade	Rust resistant mold with sensitive surface as mirror polishing, creping, EDM (OA electronics, Transparent case etc)
Pre	37~41 HPM1		P21 improved & resulpherized	Mold for general use (Home electronics etc), Plate & holder
	38~42 FDAC		H13 improved & resulpherized	Engineering resin, Slide core
	НРМ38		420 improved	Mold for Anti-corrosion / Mirror polish (Floppy, Casette, Medical instruments, Food container, etc)
	50~55	HPM38S	420 improved	Mold for super mirror polish (Optical disc / Lense)
S.	56~60	HPM31	A2 improved	Wear resistant mold for engineering resin (Gear, Connector, IC)
Temper	50~00	YXR33	Matrix HSS	Mold required high toughness & high hardness (Core pin, Thin wall)
Quench and	60~63	ZCD-M	D2 improved	IC mold
For Quer	HAP10		P/M HSS	Reinforced engineering resin, IC mold
Ъ	Č 60~65 ZDI		P/M Cold Die Steel	Reinforced and flame retardant engineering resin, IC mold, Slide parts, Cutter required exceptional wear resistance
Aging	40~45	HPM75	High hardness, non- magnetic, resulphurized	Molding in magnetic field (Plastic magnet)
For A	52~57	YAG	Maraging Steel	Mold required exceptional toughness (Core pin, Thin wall), Super mirror polish (Optical lense)

Mold Material and Application

Sequence by Technical Needs

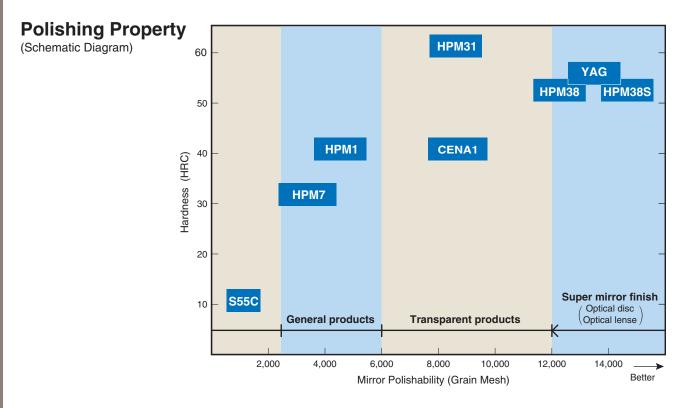
General Mold (Prehardened Steel)

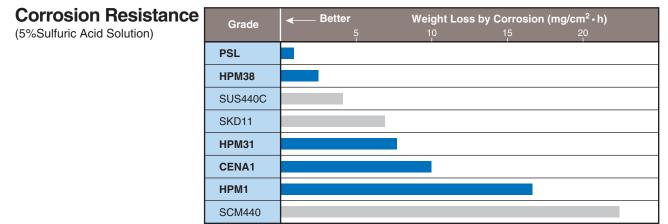
Precise Mold (Steel for Hardening)

Properties Comparison Table

Material	Machinability	Heat deformation	EDM/Creping texture	Mirror polishability	Weldability	Rust resistance	Wear resistance	Toughness	Cost
HPM7	4	-	3	3	5	2	2	4	4
HPM38	3	4	5	4	3	4	3	3	2
HPM77	4	-	2	2	3	4	2	3	3
PSL	2	-	4	3	5	5	2	4	2
CENA1	4	-	5	4	4	3	2	3	3
HPM1	4	-	3	3	3	2	2	2	3
FDAC	3	-	2	2	3	3	3	3	3
HPM38S	3	4	5	5	3	4	3	3	1
HPM31	3	4	5	4	2	3	4	3	2
YXR33	3	3	5	4	3	3	4	4	2
ZCD-M	2	3	5	2	1	4	4	2	2
HAP10	2	3	4	3	1	2	5	2	1
ZDP4	1	3	4	4	1	4	5	2	1
HPM75	1	3	2	2	3	3	3	3	2
YAG	2	4	5	5	5	3	3	5	1
S55C	5	-	3	2	3	1	1	3	5
SCM440	3	-	3	2	3	2	1	3	4

Ratings: 5-Best 3-Ordinary 2,1-Poor (Remarks) Please refer above as general concept.


PLASTIC MOLD STEELS / HPM Series


Properties Comparison

Machinability

Drilling Tool: SKH51ø10 Feed: 0.15mm / rev Depth: 30mm (brind hole)Dry

Grade	Hardness HRC	Cutting S	I Life: Cuti	ing Length 1m) 30	Better → 40
S55C	13				
SCM440	28				
НРМ7	32				
НРМ38	32				
PSL	35				
CENA1	40				
HPM1	40				
FDAC	40				
SKD11	Annealed				
HPM31	Annealed				

Properties Comparison

Wear Resistance

Ohgoshi Wear Test Work Material SMC415 Load 6.8kg Total Friction Length 400m Friction Speed 0.78m/sec

Grade	Hardness	Wear Ratio (mm ³ /mm ² • mm) x 10 ⁻⁷				
Grade	HRC	← Better	0.5	1.0		
SKD12	59					
SKD11	60					
HPM31	59					
ZDP4	65					
SUS440C	57					
SKH51	63					
HAP10	64					

Mechanical Properties

Grade	Hardness HRC		Tensile Strength N/mm ²	0.2%Yield Strength N/mm ²	Elongation %	Reduction of Area %
HPM7	3	2		854	20	55
HPM38	52		1,912	1,618	13	35
HPM77	32		990	843	16	41
PSL	3	9	1,167	1,098	11	34
CENA1	4	0	1,225	1,150	15	50
HPM1	40	L	1,225	1,029	18	40
	40	Т	1,216	1,010	10	25
HPM75	42		1,304	1,108	11	28
YAG	5	3	2,010	1,912	10	48

Physical Properties

Grade	Thermal Expantion Coef. (x 10 ⁻⁶ °C)			Thermal Conductivity (W/m • K)					
Grade	100°C	200°C	300°C	400°C	20°C	100°C	200°C	300°C	400°C
HPM7	11.8	12.2	13.0	13.4	34.3	37.7	39.8	40.6	40.6
HPM2	11.5	11.9	12.5	12.9	37.2	37.6	38.0	39.3	38.0
HPM38	11.5	11.9	12.3	12.5	25.1		27.2		27.6
HPM77	10.7	11.1			17.9	18.8	20.9		
PSL	10.6	11.1	11.9	12.1	16.3	17.1	18.8		21.3
CENA1	11.0	11.4	12.0	12.5	28.6	28.3	28.8	30.1	
HPM1	11.4	11.8	12.3	11.8	32.6	33.0	33.4	34.7	34.7
HPM31	11.9	12.3	12.6	12.7	28.4		28.8		28.3
HAP10	10.6	10.8	11.1	11.4	19.2	20.0	20.9	21.3	22.5
HPM75	16.9	17.6	17.0		15.8		17.9		21.3
YAG		10.8			20.9		25.5		27.6

Resin Types and Grade Selection

			Required L	ife and Grade Recom	mended	
R	esin	Required Properties for Mold	SHORT >10 milliom	MEDIUM > 50 milliom	LONG >100 milliom	MASS PRODUCTION >100 milliom
	General	Machinability	HPM7	HPM7 HPM2	CENA1 HPM1, 50 FDAC	CENA1 FDAC + Nitriding
	Engineering Resin	Wear Resistivity	HPM7	HPM7+ Nitriding	CENA1 FDAC	HPM38 HPM31
Thermo -plastic	Reinforced	High Wear Resistivity	FDAC CENA1 HPM1	CENA1 FDAC + Nitriding, Plating	HPM31	ZDP4 HAP10
	Flame Retardant	Corrosion Resistivity	HPM38 CENA1	HPM38 PSL	HPM38	HPM38
	Transparent	Mirror Polishability	CENA1 HPM38	CENA1 HPM38	HPM38	HPM38 ZDP282
Thermo- set	eneral	Wear Resistivity	CENA1 HPM1 FDAC	CENA1 HPM1, 50)+ Plating FDAC	HPM31	HPM31
	Reinforced	High Wear Resistivity	CENA1 FDAC +Nitriding	HPM31	HPM31	HAP10 ZDP4

General Resin : PS, PE, PP, AS, ABS etc.

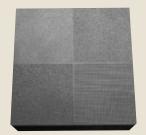
Engineering Resin : PC, PPE, PA, POM, PBT, PET etc.

Advanced Engineering Resin: PPS, PI, PES, PEEK etc.

40HRC Prehardened Grade

Prehardened: 37~ 42HRC Precipitation Hardening, Rust-Resisting Grade for Precise Mold


CENA1 is new concept grade breaking through with rust resistivity and excellent machinability. CENA1 is manufactured by consumable electrode remelting method, having exceptional high purity and suit for critical surface finish.


Features

- No heat treatment is necessary. Uniform hardness distribution. (37~42HRC)
- Higher rust resistivity compared with P21 type grade.
- Excellent machinability makes machined surface better.
- Excellent mirror polishability, crepe- and EDM finishability.
- Good weldability with least hardness elevation.
- Good nitrinding hardenability and can be used for wear resisting application.

Application

- Critical surface finish mold for transparent parts, etc.
- Engineering resin products.

Creping Sample

Non-glare Treatment Sample

EDM Sample CENA1 100X100X50 (mm)

40HRC Prehardened Grade

HPM1

Prehardened: 37~41HRC Free Machining Precipitation Hardening Grade for Precise Mold

HPM1 is free machining plastic mold steel prehardened to 40HRC . With superb machinability, HPM1 is fitted for genaral applications.

Features

- No heat treatment is necessary. (37~41HRC)
- Excellent machinability among 40HRC prehardened grades.
- Uniform hardness even in large crosssection and less wear of parting.

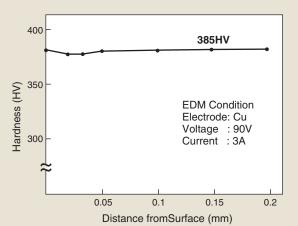
Application

- General plastic products.
- Home electronics, auto parts.
- Daily goods for mass production.
- Precision mold for rubber.
- High hardness die plate, holders.

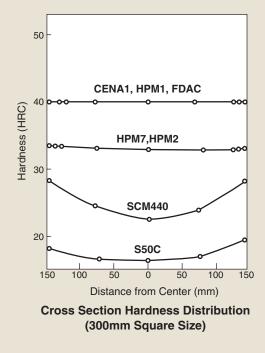
FDAC Prehardene Free Machin Hot Workin

Prehardened: 38~42HRC Free Machining Hot Working Die Steel

Features


- No heat treatment is necessary. (38~42HRC)
- High wear resistance and toughness.
- High abrasion resistance.
- High hardness obtained by nitriding.

Application


- Slide parts, Pin.
- Engineering resin products.

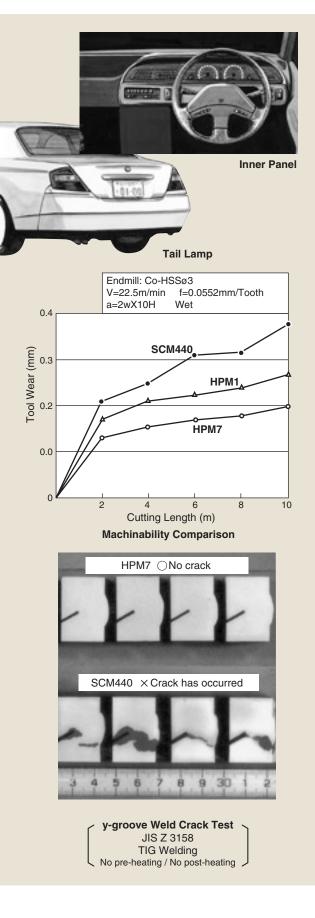
Personal Computer

Hardness Distribution of EDMachined Surface in Depth (HPM1)

32HRC Prehardened Grade

HPM7

Prehardened: 29~33HRC For Medium and Large Mold for General Application


HPM7 is plastic mold steel prehardened to 29~33HRC fitted for medium and large size mold, having good machinability and weldability. In addition, it has good mirror polishability and EDMachinability to make itself one of the best steel among P20 improved grades.

Features

- Uniform hardness distribution even in large crosssection. (29-33HRC)
- Machinability is better than P20 or free machining carbon steel.
- Excellent weldability with least hardness elevation.Good mirror polishability.
- Less streak texture and least hardness elevation on EDM surface makes finishing easier.
- Excellent toughness.
- Excellent nitriding property.

Application

- Auto parts ex.Headlight lense, Taillamp, Inner panel etc.
- Home electronics, House equipment ex. TV cabinet, Air conditioner housing etc.
- Others large daily goods, Large container, Pipe, Rubber.

Prehardened Stainless Grade

HPM38 Pre Har For

Prehardened: 29~33HRC Hardenable to: 50~55HRC For Anti-Corrosion and Mirror Polish Mold

HPM38 is Mo contained 13Cr martensitic stainless steel prehardened to 29-33HRC, manufactured by consumable electrode remelting method, further hardenable to 50-55HRC. It is fitted for molds which require corrosion resistance and superb mirror polishability. In addition, it suits for precise heat treatment. Excellent corrosion resistance also makes mold storage easier.

Features

TELLS / HPM Series

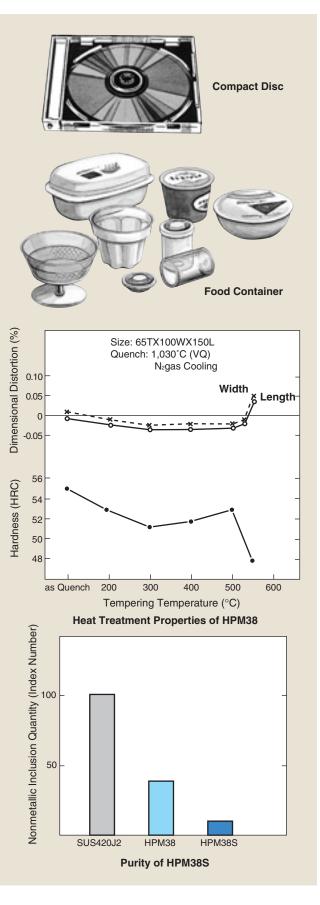
LASTIC MOLD S

- Excellent mirror polishability.
- Better corrosion-resistivity than 420.
- Chromium plating is not necessary.
- Least heat treatment deformation, best fitted for precise mold.
- As HPM38 is supplied as prehardened condition, it can be used without further heat treatment also.

Application

- Transparent items: Lense, Container for cosmetics, etc.
- Flame retardant resin products: Home electronics, OA equipment.
- For saving plating: Food container, Medical instruments.

Heat Treatment


- Quenching: 1,000~1,050°C Air Cooling.
- •Tempering: 200~500°C Air Cooling.

HPM38S

Prehardened: 29~33HRC Hardenable to: 50~55HRC For Super Mirror Polish Mold

Features

- Superior mirror polishability to below 0.01µ m surface roughness.
- Other features are same as HPM38.
- CD, DVD, MO, and optical lense.

Prehardened Stainless Grade

Prehardened: 33~37HRC (Flat bar) 38~42HRC (Round bar) For Higher Grade Anti-Corrosion Mold

PSL is precipitation hardening stainless steel which shows superior corrosion resistance as used for corrosive gas yielding resins or resins with flame retardant additives without plating.

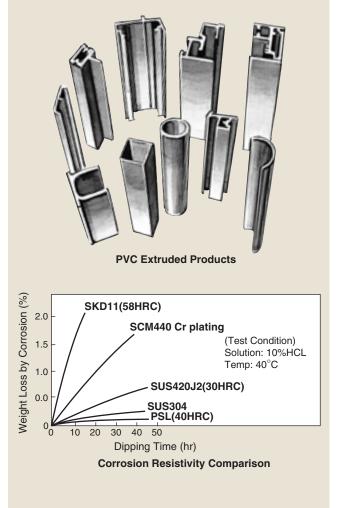
Features

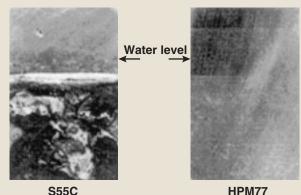
- Best corrosion resistance among plastic mold steels. Plating is not needed.
- Least hardness elevation on EDM or welded surface and easier finishing jobs.

Application

- Polyvinyl chloride: Pipe fittings, Pipe, Sash etc.
- Resins with flame retardant additives
- Precision mold for rubber

HPM77


Prehardened : 29~33HRC Free Machining Martensitic Stainless Grade for Mold Base


Features

- · Good corrosion resistance and well fitted for rust protection of water cooling holes or surface of mold base.
- Excellent machinability
- Prehardened and good mechanical properties

Application

- Holder for compact disc mold or lense mold.
- Holder for food or medical container mold and precise engineering resin mold.
- Mold for rubber
- Anti-corrosive support tools

HPM77

Rust after 1month dipping in water

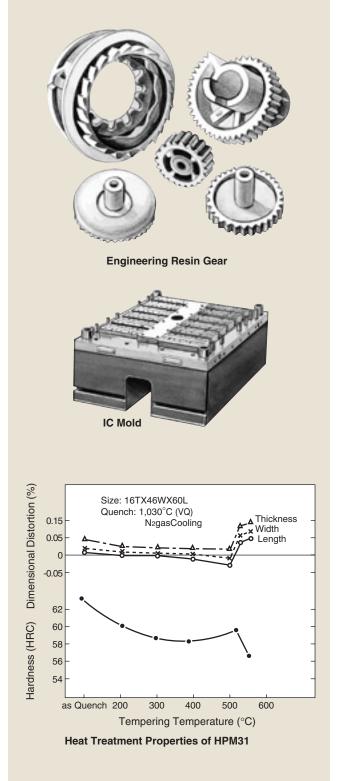
High Wear Resistance Grade

HPM31

Hardenable to: 55~60HRC High Wear Resistant Grade for Mass Production

HPM31 is wear resistant plastic mold steel with fine carbide uniformly distributed by means of appropriate alloy design and consumable electrode remelting process. Least heat treatment distortion, it suits for precise heat treatment.

Features


- High wear resistance as same as D2.
- Much better machinability and grindability than D2.
- Least heat treatment deformation, best fitted for precise mold.
- Good mirror polishability, crepe- and EDM finishability
- High hardness and toughness.

Application

- Engineering resin products and thermosetting resin products.
- Precise mold: IC mold, Connector, Watch parts, Camera parts.

Heat Treatment

- Quenching: 1,000~1,050°C Air Cooling.
- Tempering: 200~550°C Air Cooling.

Aging Grade

Hardenable to: 50~57HRC **Super High Toughness Maraging Steel**

As YAG is delivered as solution heat treated condition, you are advised to conduct aging at 480-520°C in order to get hardness between 50-57HRC after engraving cavity.

Features

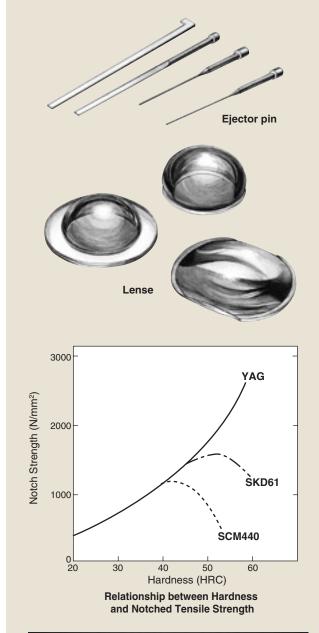
- Superior toughness and mechanical properties under high hardness and best fitted against breakage.
- Super mirror polishability.
- Hardness about 55HRC is obtainable by aging at 480°C with least distortion.

Application

- Optical lense.
- Thin core pin.
- Ejector pin, either of smaller dia-meter or of longer length.

Hardenable to: 40~45HRC HPM75 Hardenable to: 40~4 Non-Magnetic High Hardness Free Machining **Plastic Mold Steel**

Features


- Permeability (μ) is 1.01, equally non-magnetic as 304.
- \bullet 40-45HRC is obtainable by aging of 700°CX5h and has higher wear resistance.
- Good nitriding properties.

Remarks:

Slower machining recommended as it is easily hardened by machining.

Application

- Plastic magnet.
- Wear resistant, non-magnetic supportive tools.

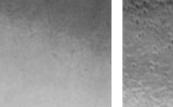
Plastic Magnet

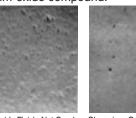
13

Higher Grade Polishing Method of Plastic Mold

Polish procedure Example

Polish by oil sand paper (use kerosene) $------ #600 \rightarrow #800 \rightarrow #1000 \rightarrow #1200 \rightarrow #1500$ Finish Polishing by diamond compound (use felt cloth) #1200→#1800→#3000→#8000

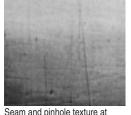

Polish by oil grinding stone (use kerosene) ------ #180→#240→#320→#400→#600→#800

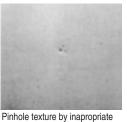

Important points of polishing

- 1. Each procedure is to be strictly kept.
- 2. When changing from one number to another, check if there are remained scrach by changing polishing direction. (move 45-90 degrees)
- 3. When changing numbers, wash and remove last polishing grains completely.
- 4. Polishing by diamond compound needs to be done in short times. Excessive polish can produce pinholes or orange peel.
- 5. Don't use alumina and chromium oxide for finishing as the polish capabilities are lower than diamond.
- 6. During long interruption, the object must be protected from the rust.

Remarks:

A. For superior polishing use diamondcompound. Don't use alumina nor chromium-oxide compound.




Chromium Oxide Finish Not Good

Aluminium Oxide Finish Not Good

- B. Lord for polishing should be kept lowest possible.
- C. Foregoing polish should be done prudently.
- D. Rust proof measures must be taken in any interruption of jobs.

rust proof.

overload.

Diamond Compound Finish

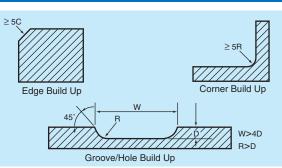
crossing by less foregoing polish

Welding of Plastic Mold

Attentive points

1.Preparations before welding

- A. Form of location to get welded should be made smooth as Figure 1.
- B. Cracks and treated surface (nitrided or plated) must be eliminated.
- C. Oil, dust, moisture and scale must be removed thoroughly.


2.Welding rod

A. Welding rod of similar composition as mold is to be used so that welding may not bring about unevenness of mirror finish or creping surface.

When the mold is made from HPM1, use welding rod made from HPM1-W.

Likewise, in case fo TIG welding there are T-HTM-31 and T-HTM38 in the market for welding for mold made from HPM31 and HPM38.

- B. In case of using coated electrode, mold should be dried by heating to 250-300°C.
- C. For cavity welding, TIG welding should be applied. (TIG: Tungsten Inert Gas)

Figure 1. Standing shapes for build up welding

3.Welding

- A. Figure 2 shows example of actual welding jobs of representative arades
- B. Tempering should be conducted soon after welding in case of prehardened steel or hardened and tempered steel according to Figure 2.

Tempering is effective to protect mold from crack and to stabilize mirror finish and creped surface by having uniform hardness and structure.

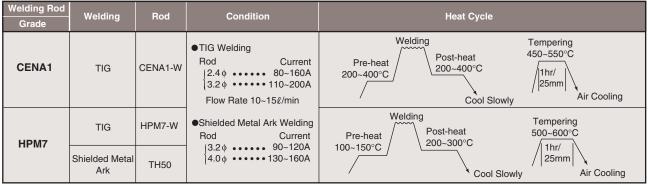


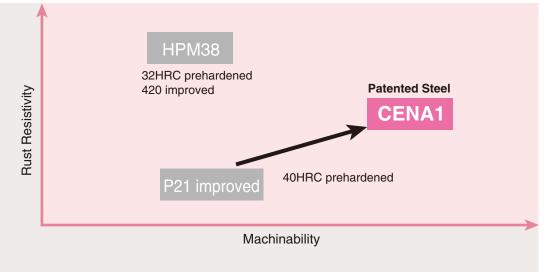
Figure2. Welding procedure

LASTIC MOLD STEELS / HPM Serie

YSS PLASTIC MOLD STEELS CENA1

Innovated for 21century global standard grade.

- •Solution for Mold Rust Problem
- •40HRC Prehardened Grade with Excellent Machinability
- •Excellent Polishability, Crepability and EDMachinability
- Most Suitable for Weldless Molds



Features

CENA1, new concept tool steel for injection mold, breaks through with excellent machinability and rust resistivity. Manufactured by consumable electrode remelting process, CENA1 has low non-metallic inclusion content and excellent mirror polishability. CENA1 is delivered in 40HRC prehardened condition.

- •Solution for Mold Rust Problem
- •40HRC Prehardened Grade with Excellent Machinability
- •Excellent Polishability, Crepability and EDM Machinability
- •Most Suitable for Weldless Molds

Characteristics

Properties Comparison

excellent \bigcirc > \bigcirc > \triangle >X poor

Grade	Hardness (HRC)	Machinability	Rust Resistivity	Mirror Polishability	Crepability	EDM Machinability
CENA1	37-42	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
P21 improved	37-41	0	×	0	O	O
P21 improved and sulfulized	37-41	O	×	0		\bigtriangleup
P20 improved	29-33	O	×	\bigtriangleup	\bigtriangleup	\bigtriangleup
P420 improved	29-33		O	0	0	O

Application and Actual Performance

Application

- •Molds for which temperature control is required
- (Weldless molds, etc.)Mold reguiring sensitive surface as mirror polishing, creping and EDM

OA equipment, Communication equipment (ex.Mobile telephone, Video camera, CD case) Home Electronics (ex.Cleaner, Air conditioner) Auto parts (ex.Tail lamp, Inner panel, Transparent cover) Cosmetics case, bottle

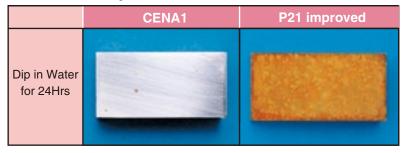
•General resin

Actual performance Example

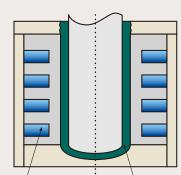
Rust Resistivity

Application	Comparison of Actual Performance with Conventional Grade by Customers
Mobile Phone	Less rust and deformation during EDM. Less rust and corrosion by resins during molding. (Mold durability increase more than 4 times compared with conventional grade.)
CD Tray	Resistant to corrosive gas generated by ABS resin, mold maintainance frequency decreased drastically.
Electronics Parts	Least rusting during WEDM for 1 week. Rust removing process becomes unnecessary.
Mechanical Parts	Resistant to corrosive gas generated by advanced engineering resins. Mold durability is improved.

Machining


Air Conditioner Filter	Less tool wear during precise rib machining and better surface obtained. Nitrided hardness 70HRC is effective to prevent mold depression by resin burr.
Acrylic Lense	Carbide endmill tool life is doubled. Easy to mirror polish EDM surface.
TV Speaker	Many small pins ware EDMachined. Better EDM surface has been obtained compared with conventional grade.
Auto Head-light Lense	Good machinability in ball endmilling. Smooth surface machined with 0.4R ball endmill makes polishing easy.

Rust Resistivity


CENA1 has improved rust resistivity compared with conventional 40HRC prehardened grade.

- Improvement of corrosion problem on mold surface by resins.
- Decreased rust formation at cooling water hole makes cooling effect stable.
- •Fewer rust problem in storage, transportation, or usage of mold
- Much less rust formation on WEDM surface

Rust Resistivity of Polished Surface

Actual Performance Example of Rust Decreasing at Cooling Water Grooves of PET Parison Mold

Cooling Water Grooves

Injection Mold Product

CENA1 No plating

P21 improved and sulfurized+Cr plating

CENA1 Molding Result

	CENA1	P21 improved and sulfurized
Surface Treatment	No Plating	Cr Plating
Mold after 2 Months Use	Rust is removed easily by wiping.	Cr Plating came off and material was rusted deeply.

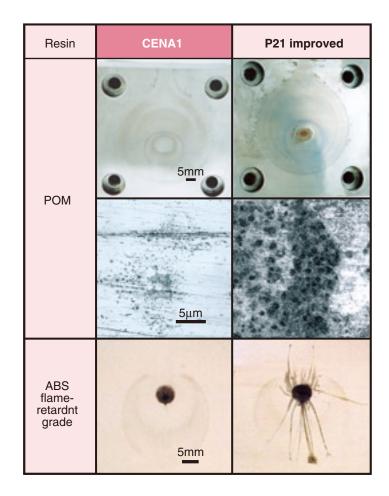
Photographs show water cooling grooves of the molds after 2 months use.

(3 cavities...CENA1, 3 cavities... P21 improved and sulfurized + Cr Plating, Total 6 cavities with one molding machine)

Rust Resistivity

CENA1 increases mold durability against corrosion by gas generated from resin.

Gas generated from resin often becomes high temperature by injection pressure and corrode the mold. It brings cloudiness of mirror surface and burr of injected parts. CENA1 improves above gas-corrosion


resistance by alloy combination.

Figure

Acceleration gas-corrosion tests by a mold that is made to shut gas intentionally.

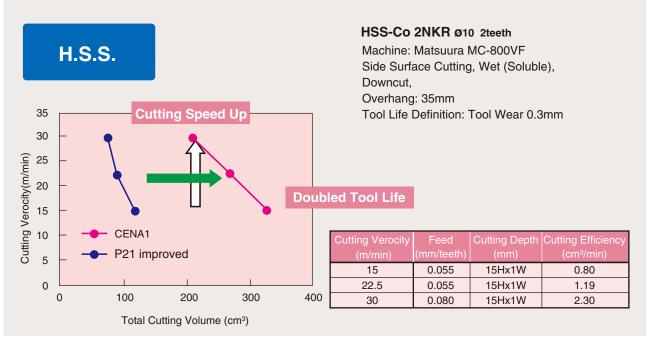
Observation results of the mold surface after 3000 shots of POM and ABS flame retardant grade.

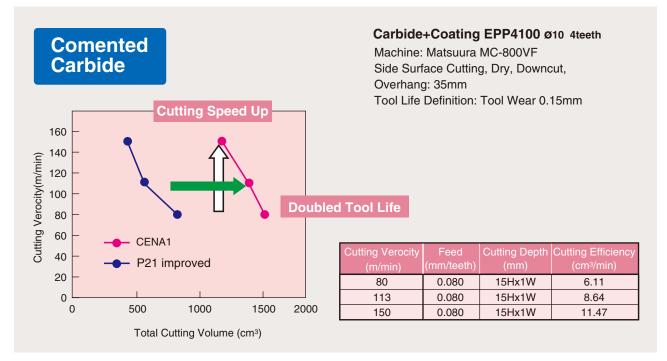
Change on surface of specimens after injection molding tests

CENA1 and Weldless Molds

CENA1 is most suitable for weldless molds for which temperature control is required, bucause surface condition of heating and cooling holes comes to be less corrosive and more stable.

CENA1 is widely used for the products such as PDP (Plasma display panel) and video cameras for better surface condition is indispensable.


Weldless Molds


Machinability

Excellent machinability of CENA1 doubles tool life compared with conventional 40HRC grade tool steel in endmilling.

- CENA1 can promote cutting efficiency
- CENA1 can decrease tool-change frequency drastically.
- Smooth cut surface of CENA1 makes afterpolishing easier.

1.VT Curve

Machinability

2. Endmilling Example

This sample was machined by one endmill for 22 hours. Machined surface roughness is very smooth.


Tool : ø 3.0 2 teeth EPDR2030-30-05-TH (Hitachi Tool) Machine : MAKINO V33 Cutting Verocity: 50m/min (5300min⁻¹)

Feed: 0.06mm/tooth (640mm/min) Cutting Depth: 0.06mm Pick Feed: 0.12mm Dry (Air Blow) Cutting time: 22Hr

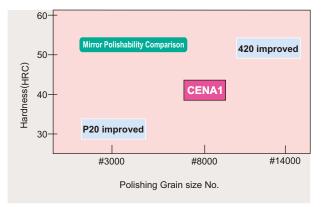
Number of tool use: 1

3.Drilling Condition

Deep hole machining condition

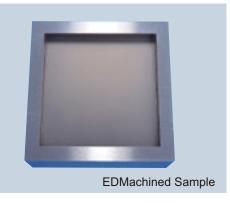
Dia.	Gread	Hole depth (mm)	Cutting Verocity (m/min)	Feed (mm/rev)	Step feed (mm)	Step back	Machined hole number	Remarks
ø0.6	SKH51(M2)	10(16D)	15	0.001	0.1		20	 Procedure
ø1	SKH51(M2)	10(10D)	20	0.003	0.2		60	1.Positioning
ø1	Co-HSS+Coating	10(10D)	20	0.003	0.2		220	(Starting drill)
ø1	Cemented Carbide +Coating	10(10D)	25	0.003	0.2		820	130° 1.0
ø2	SKH51(M2)	20(10D)	10	0.05	0.9		55	
ø3	SKH51(M2)	30(10D)	12	0.05	1.2		60	2.Machining drill
ø4	SKH51(M2)	40(10D)	12	0.05	1.3		83	
ø5	SKH51(M2)	50(10D)	12	0.06	1.5		105	Ψ
ø7	SKH51(M2)	42(6D)	15	0.1	2		200	
ø10	SKH51(M2)	90(9D)	13	0.13	2		50	

Machine : Vertical Machining Center Solution : Emulsion


Deep hole machining condition example by Gun drill

Dia.	Hole depth (mm)	Cutting verocity (m/min)	Feed (mm/rev)	Ejection pressure of cutting fluid (MPa)	Machined hole number	Remarks
ø3	80	25	0.007	4.9	6	
ø5	150	19	0.005	4.9	6	⊾/ Inner angle 20°
ø11.5	500	48	0.012	3.6	8	
ø18	600	35	0.014	3.4	7	
ø25	700	47	0.02	2.9	6	Quter angle 30°
ø30	800	55	0.03	2.9	3	

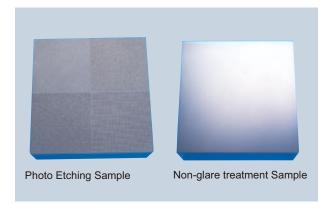
Machine : Vertical Gundrill Solution : Oil


Mirror Polishability

CENA1 has very low non-metallic inclusion content and excellent mirror polishability.

ED Machinability

CENA1 has good EDMachinability. As surface hardened layer is much less than conventional grades, CENA1 is able to be polished easier after EDMachining.

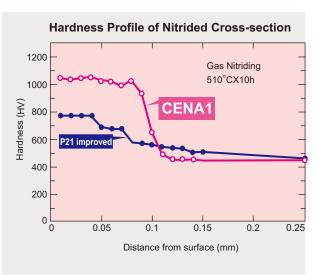

CENA1 100x100x50(mm)

(Condition)

Machine: HQSF(MAKINO), EDGE2S #108 Solution: Paraol 250 Additive: µSC (0.8-1.0g/L) Electrode: Gr 78.0mm (EDM depth 1.0mm) Cu 79.2mm (EDM depth 0.4mm) Cu 79.7mm (EDM depth 0.15mm)

Crepability

CENA1 has homogenized micro structure and good crepability. CENA1 is suitable for precise creping.

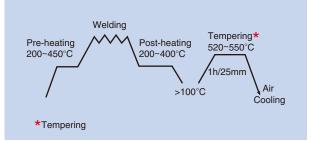


•EDM surface Etching •••• Sand blasting treatment is needed before etching.

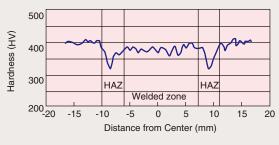
•Welded Surface Etching ••• Post-heating (≤ 200°C) after welding is needed before etching.

Nitriding Property

By nitriding, 1000HV surface hardness is obtained easily on CENA1, that is effective against wearing of slide core or mold for reinforced resin.

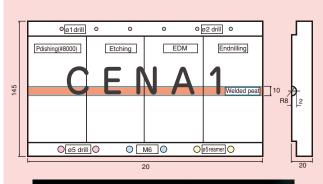


• The care is necessary to avoid breakage by overhardening especially for small dia. pin or sharp edge part.


It is recommended to apply lower nitriding temperature or soft nitriding condition.

Weldability

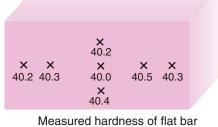
As welded area hardness variety of CENA1 is less than conventional grades, mold is able to be repaired and finished easily.



Welding repair is recommended to be done by TIG welding with CENA1-W rod.

Measured Surface Hardness of Welded Area

Welding Procedure Example



Photograph shows mirror polishing, creping, EDM and endmilling finished sample after welding repair (10mm width). No weld mark is obserbed on each finished surface.

Hardness Distribution and Machanical Properties

Hardness Distribution

CENA1 shows almost uniform hardness distribution even in large cross-section material.

200^t X 510^w cross section.

Mechanical Properties

Machanical properties are almost same as P21 improved grade.

Grade	Hardness (HRC)		Elongation (%)		2U charpy impact value (J/cm ²)	
CENA1	40	1,225	15	50	20	
P21 improved	40	1,225	20	50	20	

Physical Properties

Specific Grabity 7.78

Thermal Conductivity

Grade	20°C	100°C	200°C	300°C
CENA1	28.1	28.3	28.8	30.1
P21 improved	32.2	32.2	33.0	34.3

Thermal Expantion Coefficient

Average value from 20°C, x10⁻⁶/°C

W/(m·K)

Grade	100°C	200°C	300°C	400°C
CENA1	11.0	11.4	12.0	12.5
P21 improved	11.3	11.6	12.4	12.8

Young's Modulus 205GPa

YSS HIGH SPEED TOOL STEELS

										(mass%)
		Grade	JIS equivalent	AISI equivalent	С	Cr	w	Мо	v	Со
		YXM1	SKH51	M2	0.80~0.90	3.80~4.50	6.00~7.00	4.80~5.80	1.80~2.30	-
		YXM4	SKH55	M35	0.85~0.95	3.80~4.50	6.00~7.00	4.80~5.80	1.80~2.30	4.50~5.50
sels	Molybdenum	YXMT	-	M1	0.75~0.85	3.50~4.50	1.30~1.80	8.00~9.00	0.90~1.30	_
Conventional High Speed Steels	High Speed Steel	YXM42	SKH59	M42	1.00~1.10	3.50~4.25	1.25~2.00	9.00~10.00	1.00~1.50	7.75~8.75
al High S		YXM60	Original Steel	-	1.00~1.10	3.80~4.50	5.00~6.00	6.00~7.00	1.50~1.80	7.50~8.50
Ivention	Vanadium High Speed Steel	XVC5	SKH57	-	1.20~1.30	3.80~4.50	9.00~11.00	3.00~4.00	3.20~3.70	9.50~10.50
Cor	Tungsten High Speed Steel	YHX2	SKH2	T1	0.73~0.83	3.80~4.50	17.00~19.00	-	0.80~1.20	_
	Matrix	YXR33	-	-						
	High Speed Steel	YXR3	Original Steel	-						
		YXR7	Original Steel	-						
		HAP5R	-	_						
	Steels	HAP10	-	_	1.30~1.40	4.50~5.50	2.50~3.50	5.50~6.50	3.60~4.00	-
	P/M High Speed Steels	HAP40	SKH40	_	1.27~1.37	3.70~4.70	5.60~6.40	4.60~5.40	2.80~3.30	7.50~8.50
	P/M Hiç	HAP50	-		1.54~1.64	3.70~4.70	7.50~8.50	5.50~6.50	3.80~4.30	7.50~8.50
		HAP72	Patented Steel	_	2.02~2.32	3.70~4.70	9.00~10.00	8.00~8.50	4.80~5.10	9.00~10.00

Chemical compositions

Applications and YSS grade Features

Grade	Applications	Features	
YXM1	Drill, Reamer, Broach, Chaser,	Standard Molybdenum high speed steel with	
	Metal saw, Cutters, Cold punch, Dies	superior toughness	
YXM4	Hob, Drill, Reamer, Chaser, Cutters,	Standard Cobalt alloyed Molybdenum high speed	
	Heading tool for stainless, Endmill	steel with superior heat resistance	
YXMT Tap, Roller dies		Molybdenum high speed steel with superior	
		grindability and toughness	
YXM34	Hob, Cutters	Cobalt alloyed Molybdenum high speed steel	
-		suitable for intermittent cutting	
YXM42	Drill, Cutters, Hob, Tap,	Super-hard high speed steel suitable for cutting for	
	Wood working tools	hard materials	
YXM60	Endmill, Hob, Broach, Cutters, Drill, Tap,	High-performance high speed steel with superior	
1741100	Heading tool for stainless	durability, toughness and grindability	
XVC5 Tool bit, Cutters, Hob, Endmill,		High-performance Cobalt alloyed Vanadium high	
	Cold punch, Dies	speed steel with wear/heat resistance	
YHX2	Cutters, Broach	Standard Tungsten high speed steel	
YXR33 Warm forging dies, Hot forging dies, Cold forging dies, Al-die cast insert pin		Matrix high speed steel for forging tools with most	
		superior toughness	
YXR3 Warm forging dies, Cold heading punch,		Matrix high speed steel for forging tools with	
IANS	Trimming dies, Cold forging punch and die	superior toughness	
YXR7	Cold punch and die,	Matrix high speed steel for forging tools with	
	Fine blanking die, Thread roller die	superior strength/toughness	
HAP5R	Severe forming tools, cold/warm forging	Toughest P/M high speed steel	
пагэл	dies, fine blanking dies	Toughest Philingh speed steel	
HAP10	Heavy duty working tools as fine blanking dies,	Superior toughness effective to avoid chipping	
HAPTU	Lower speed cutting tools as taps	Superior loughness enective to avoid chipping	
	Cuttora Diag	Most standard grade with good balance of	
HAP40 Cutters, Dies		hardness, toughness and wear resistance	
HAP50	Heavy duty cutting tools for hard material	Higher hardness, good heat and wear resistance	
HAP72	Heavy duty cutting tools, Dies	Good heat wear resistance and highest obtainable hardness of 70HRC	

Recommended grade by application

Cutting tools

() shows standard employed hardness/HRC.

Analisation	Recomended Grade							
Application	For general use	For hard material cutting	For high speed heavy duty cutting					
Tool bit	XVC5 (65~68) HAP72 (69~71)							
Drill	YXM1 (63~66)	YXM60, YXM42 (66~68) HAP50 (66~68), HAP72 (68~70)	(65~67) HAP40, HAP50 (66~68)					
Тар	YXM1 (63~66)	YXM20, YXM30 (65~67) HAP10, HAP40 (65~67)	YXM30 (65~67) HAP45 (65~67)					
Reamer	YXM1 (63~66)	YXM4, YXM60 (65~67)	YXM4 (64~67)					
Milling cutter	YXM1 (63~66)	YXM42 , YXM60 (65~67) HAP40 (66~68)	YXM4 , XVC5 (65~67) HAP40, HAP50 (66~68)					
End mill	YXM1, YXM4 (64~66) YXM60 (67~69)	YXM60 (67~69) HAP72 (69~71)	XVC5 (66~68) HAP50 (66~69), HAP72					
Broach	YXM1 (63~66) YXM4 (64~67)	YXM60 (66~68) HAP10, HAP40 (66~68)	(69~71) YXM30 (65~67)					
Hob	YXM4 , YXM1 (64~69)	YXM60 (67~69) HAP50 (67~69)	HAP10, HAP40 (66~68) HAP40 , HAP50 (66~68)					
Pinion cutter	YXM1, YXM4 (63~65)	HAP40 (65~67)	HAP10, HAP40 (64~66)					
Shaving cutter	YXM1 (64~66)	YXM30 (65~67) YXM42, YXM60 (66~68)						
Rack cutter	YXM1 (63~66)	YXM4 (65~67)	YXM4 (65~67)					
Chaser	YXM1 (62~65)	YXM30 (65~67) HAP10 (65~67)	YXM4, YXM30 (65~67)					
Metal saw	YXM1 (63~66)		YXM42, YXM60 (65~67) YXM4 (65~67)					
Hack saw	YXM1 (62~65)	YXM42 (66~68) HAP40 (66~68)	YXM42 (66~68) HAP40 (66~68)					
Metal band saw	YXM1 (64~66)	YXM42 (66~68) HAP40 (66~68)	HAP40 (66~68)					
Wood cutter	YXR3 (58~61) YXM1, YHX2 (62~65)	YXM42 (66~68)	YXM4 (65~67)					

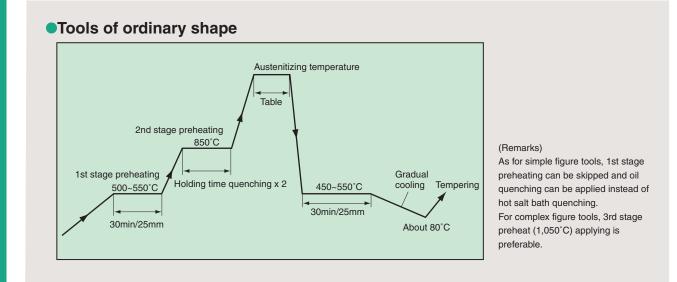
Cold working tools

Application		Required		Recommended YSS steel			
		hardness range For general use - HRC		For mass production use			
				For abrasion resistance	For impact resistance		
Blanking die		58~62	SLD, SLD8, ARK1	XVC5, HAP40	YXM1, YXR7, HAP10		
Cold heading die	Male die	58~62	SLD, SLD8, ARK1	HAP40	YXM1, YXR7, YXR3		
Cold heading die	Female die	55~60	YSM	SLD, SLD8	YXM1, YXR7, YXR3		
Shearing blade	For sheet service	55~60	SLD, SLD8, ARK1	YXM1, YXR7	YXR3		
(Straigh tooth)	For medium plate	55~58	SLD, SLD8, ARK1		YXR33		
(Straigh tooth)	For heavy plate	48~53	DM, DAC				
Rotary shear slitter		54~60	SLD, SLD8, ARK1	YXM1, HAP40	YXR7, YXR3		
Trimming dies	For sheet use	55~60	SLD, SLD8, ARK1	YXM1, HAP40	YXR7, YXR3		
Initiality dies	For heavy plate use	50~55	DM, DAC				
Bender Swaging dies		58~62	SLD, CRD, ARK1	XVC5	YXM1, YXR7		
Cold working dies	Male die	58~62	SLD, SLD8, ARK1	YXM1, HAP40	YXR7, YXR3, HAP10, HAP5R		
Cold working dies	Female die	55~63	SLD, SLD8, ARK1	YXM1, YXR7	YXR3, HAP5R		
Drawing dies		57~62	YXM1, CRD	XVC5			
Cold working rolls		≧80HS	SLD	YXM1, HAP40			
Thread rolling dies		58~64	SLD, SLD8	SLD10, YXM1, YXR7			
Coining dies		57~62	SLD	YXM1, YXR7			
Cold hobbing dies		55~60	SLD	YXM1, YXR7			
Thead cutting dies		60~64	SGT, SAT	YXM1, YXR7			

Heat Treatment Conditions

Standard heat treatment conditions

Annealing


- 1. All material is delivered as spheroidized annealed condition.
- 2. When used after reforging, spheroidized annealing is to be done before hardening.
- 3. Stress relief annealing is to be done in order to remove stress occured by cold working such as cold drawing, cold rolling or cutting and machining.
- Heating temperature : 650~750°C (to aim higher temperature when softening required)
- Holding time:1h/25mm thickness

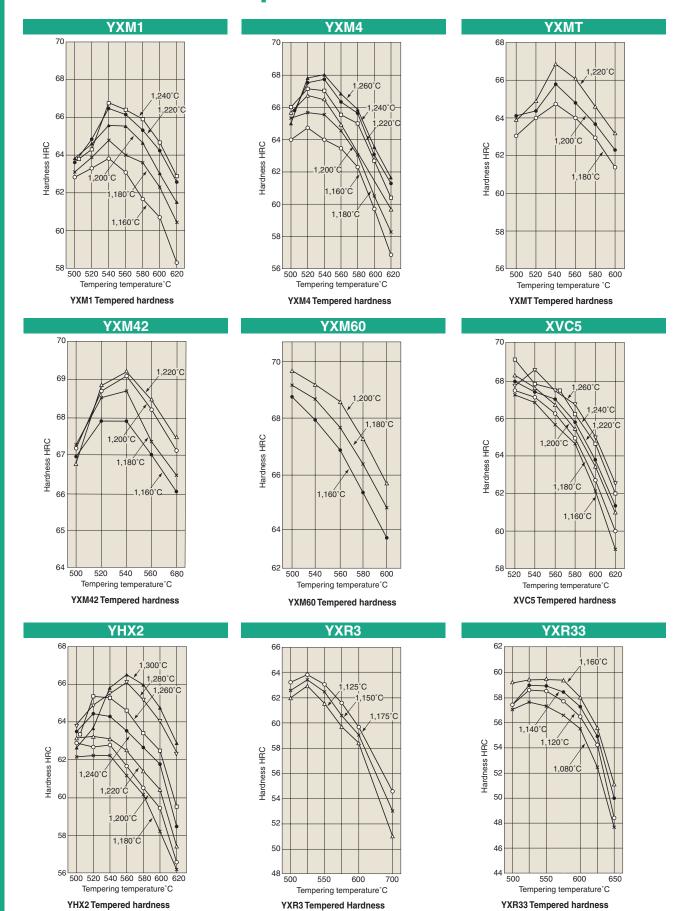
Holding time of austenitizing

Preheat 1st 500-550°C 30minutes/25mm thickness

2nd 850°C 2 X figure of following table 3rd 1,050°C 2 X figure of following table

When the object is of simple shape with thickness less than 50mm or when facilities are restricted, 2nd and 3rd steps are combined to one step with 850~900°C X 2 X table-1. When the object is small, 1st step may be skipped.

Holding time at austenitizing temperature

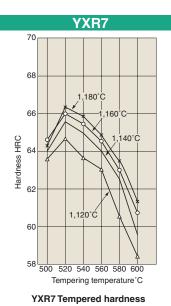

Heating furface	Thickness (mm)		10	20	30	40	50	60	70	80	90
Salt bath	Holding time (sec)	60	90	160	240	280	350	390	420	440	495
	Magnification(Holding time/Thickness)	X12	X9	X8	X8	X7	X7	X6.5	X6	X5.5	X5.5

(Remarks) Holding time in salt bath = dipping time

Holding time at tempering temperature

Thickness	≤ 2.5	26-35	36-64	65-84	85-124	125-174	175-249	250-349	350-499
Tempering holding time (hour)	1	1.5	2	3	4	5	6	7	8

(Remarks) Tempering is needed more than 2 times for grades contain no cobalt and needed more than 3 times for grades cobalt alloyed in order to make it tough enough.



Quenched and tempered hardness curve

IGH SPEED TOOL STEELS

Quenched and tempered hardness curve

66

HAP40

200°C

1,1^{60°}C

1.140°C

600

70

68

66

64 Hardness HRC

62

60

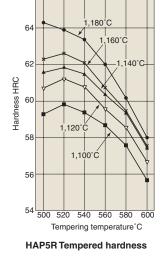
58

56

1,120°C

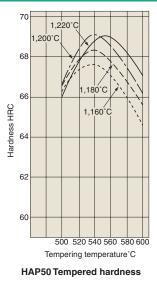
520 540 560 580

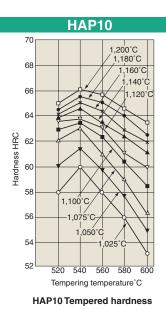
1,100°C/

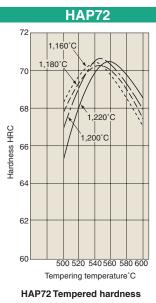

.1,075°C

1,050°C

1,025°C

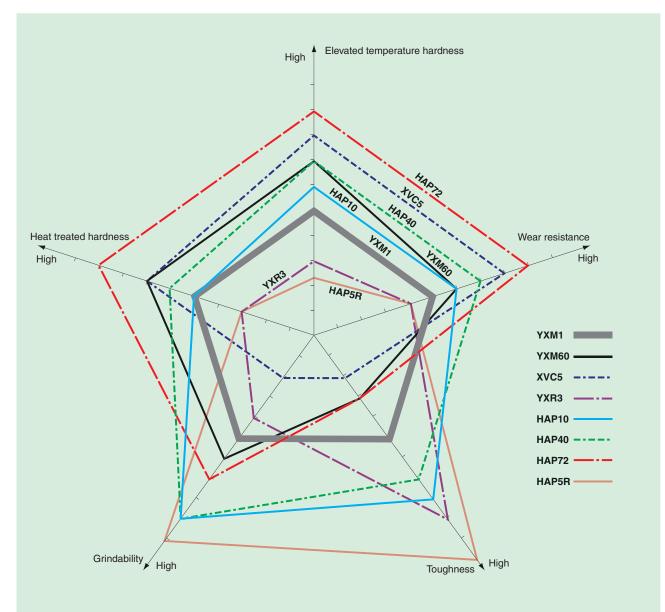

Tempering temperature°C


HAP40 Tempered hardness



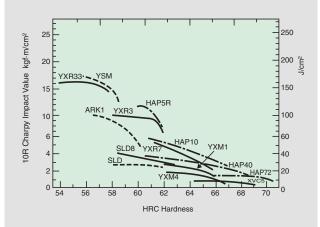
HAP5R

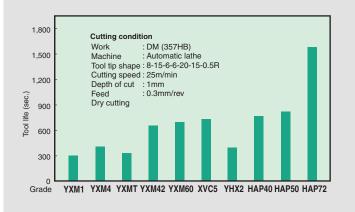
HAP50



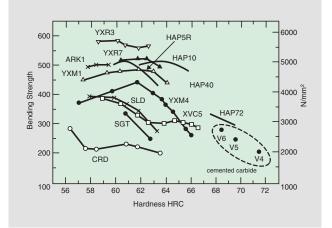
HIGH SPEED TOOL STEELS

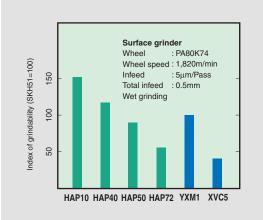
Properties


Comparison of Properties (Based on YXM1 properties)


HIGH SPEED TOOL STEELS

Properties


Charpy impact value


Continuous Cutting test by turning tool

Bending strength

Grindability

Wear resistance (Ogoshi method)

Grade	Hardness (HRC)	Specific wear (mm ³ /(mm ² ·mm)x10 ⁻⁷) 0.5 1 1.0
YXM1	65.5	
YXM4	65.0	
XVC5	67.0	
YXR33	58.0	
YXR3	59.0	
YXR7	65.0	
HAP10	64.0	
HAP40	67.2	
HAP72	70.0	
SKD11	60.5	
SKD61	55.5	5 1.85

Co-friction material Friction length Load Friction speed

Wear resistance (Abrasive Wear)

Grade	Hardness (HRC)	Wear (Volume loss ; YXM1=1) 1.0 2.0 3.0
YXM1	65	Rotate Test picece(ø6)
YXM4	65	Slide
XVC5	67	Sandpaper
YXR3	61	
YXR33	58	
HAP10	65	
HAP72	70	
SKD11	59	

Test condition Sandpaper: Al₂O₃#500 Revolution: 980rpm Friction length: 1000mm Lubricant dry Load: 49N (5kgf)

Hitachi Metals. Ltd. http://www.hitachi-metals.co.jp/

	ICNI WIETAIS, LTO. http://www	v.hitachi-metals.co.jp/
Head Office	SEAVANS North Building, 1-2-1, Shibaura, Minato-ku, Tokyo 105-8614, Japan Specialty Steel Company	Tel. +81-3-5765-4410 Fax. +81-3-5765-8317
Hitachi	Metals America, Ltd.	
Head Office	2 Manhattanville Road, Suite 301, Purchase, NY 10577, U.S.A.	Tel. +1-914-694-9200 Fax. +1-914-694-9279
Other Office	Chicago, Detroit, Charlotte, San Jose	
Hitachi	Metals Europe GmbH	
Head Office	Immermannstrasse 14-16,40210 Duesseldorf, Germany	Tel. +49-211-16009-0 Fax. +49-211-16009-29
Hitachi	Metals Singapore Pte. Ltd.	
	12 Gul Avenue, Singapore 629656	Tel. +65-6861-7711 Fax. +65-6861-1519
Hitachi	Metals (Shanghai) Ltd.	
	11F, Tian An Center, No.338 NanJing Road (West), Shanghai, 200003, China	Tel. +86-21-6358-6368 Fax. +86-21-6358-6327
Hitachi	Metals(Dong Guan)Specialty Stee	I Co.,Ltd.
Guangzhou Liaison Office	Cha Shan Town, Dong Guan City, 522380 China	Tel. +86-769-640-6726 Fax. +86-769-640-6716
Dalian Branch	3-2, Koushin Mould Industrial Park III B-1-1-1F. T. Z. Dalian, China	Tel. +86-411-8718-1011/1022 Fax. +86-411-8718-1033
Tianjin Branch	No.13 Workshop, Wenxin Industrial Park, Jingxiang Road, Xiaodian Town, Beichen Economic Development Zone, Tianjin, China	Tel. +86-22-8699-3101/3102 Fax. +86-22-8699-3103
Hitachi	Metals, Ltd.	
Beijing Liaison Office	Room No.1418, Beijing Fortune Building,5 Dong San Huan Bei-Lu, Chaoyang District, Beijing, 100004 China	Tel. +86-10-6590-8775 Fax. +86-10-6590-8776
Guangzhou Liaison Office	R3303, Metro plaza,183 Tianhebei Road Tianhe District, Guangzhou city, Guangdong, 510075 China	Tel. +86-20-8755-3649 Fax. +81-20-8755-3650

- •The characteristics listed in this catalog are representative average values which may differ from actual product characteristics.
- •This catalog and its contents are subject to change without notice.
- •Do not duplicate this catalog without permission from Hitachi Metals,Ltd.
- •Please contact a representative of our Specialty Steel Division if there are any questions or problems.

Our address and contact indicated in this catalog are those as of November 2007. If you cannot put a call through, please contact our Corporate Communication Group. in Tokyo below. Tel:+81-3-5765-4076 Fax:+81-3-5765-8312 E-mail : hmcc@hitachi-metals.co.jp